Heated Nozzle Manifold

Heated Tank

ACCUJET®
ELECTROSTATIC
HEATED SYSTEM

PRODUCT OVERVIEW

The Electrostatic heated spray system applies a heated lubricant with precision, reducing waste and downtime.

The heated system consists of:
1. Nozzle manifold with up to 8 nozzles to meet process requirements
2. Heated tank for process lubricants
3. PLC controller with touch screen interface for ease of operation

Heated lubricant is drawn from the tank by the pumps and delivered to the nozzles. The recirculation system is used to heat the nozzles to a consistent temperature with even heat distribution. The temperature is controlled in a closed loop system utilizing multiple thermocouple inputs. The lubricant is then recirculated and returned to the tank to be reheated.

The nozzles can be individually actuated depending on the amount of lubrication needed to meet your requirements.

TYPICAL APPLICATIONS

• BEVERAGE CAN LUBRICATION
• GENERAL INDUSTRIAL/GREASE
• STAMPING

accujet.com | accujetinfo@spray.com
FEATURES & BENEFITS

- Less process materials used, precise temperature control from ‘tank to the target’.
- Closed system virtually eliminates product contamination, delivering a superior quality product.
- Coatings are accurately applied to target, minimal overspray or misting, saving on maintenance and clean-up.
- Automatic spray control system self-adjusts for line speed changes to maximize production time.

SPECIFICATIONS

- Nozzle capable of reaching temperatures up to 250° F (121° C)
- Orifice sizes from .010 to .050 (.254 to 1.27mm) ID
- Needle controlled shut-off for precise on/off spray control
- Electrostatic spray nozzles available with flow rates ranging from .01 – 5cc/min
- Heated tank and lines for greater temperature control
- PLC controlled for greater flexibility

HOW DOES ELECTROSTATIC SPRAY COATING WORK?

In electrostatic spraying, a negatively charged liquid coating is attracted to a neutral, grounded target. This simple principle has powerful implications for advanced coating technology.

The physical attraction of the liquid to the target pulls the coating to an object’s surface, providing a very high transfer efficiency, typically over 90%.

Due to the attraction and low flow precision spray, overspray is virtually eliminated, reducing clean-up and improving the work environment.