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Abstract 
Dimensional as well as non-dimensional independent variables are used for predicting spray droplet size sta-

tistics and spray pattern distributions. The independent variables are: pressure, flow rate, spray angle, spray dis-
tance, viscosity, and surface tension. In the first approach, the dimensional values are used to develop a regres-
sion model for the general spray characteristics of interest; namely, Sauter mean diameter, spray width, and 
spray distribution profile shape. Secondly, a similitude approach is employed to generate dimensionless quanti-
ties from the independent variables, which are then used in formulating regression models. The similitude meth-
od allows for an assessment of the underlying balance of forces, which ultimately serve to form the spray charac-
teristics. The final model development uses linear, or nonlinear where advantageous, regression models to fit the 
operational and rheological inputs to the spray characteristic outputs. The predictor models using dimensionless 
quantities showed a improved accuracy over the dimensional models. Additionally, the included number of di-
mensionless quantities is systematically reduced, revealing the most influential independent variables for each 
output. It is found that the Reynolds, Weber, and Froude Numbers are most influential. All models are developed 
for a particular nozzle, which limits the resulting models to this particular nozzle; however, the model develop-
ment process has further reaching utility.  

 

 
Introduction  

In the spray nozzle and spray process design industry, it is advantageous to have a general idea of the spray 
characteristics for a nozzle in the beginning of the design stage, which can then be updated with more accurate 
testing results in the final design stages. To this end, the authors have engaged in an effort to develop low-order 
predictor models to provide these general spray characteristic using the results of detailed experimental testing. 
This type of model does not provide information regarding droplet breakup mechanisms, environmental 
conditions, or exact detailed spray characteristics; but does allow an accurate estimate of the spray characteristics 
over the defined input parameter range used to generate the models. 

Previous efforts toward general spray characteristic estimators, have demonstrated reasonable accuaracy. 
The current study draws upon a very large experimental database in order to arrive at improved models while 
using new methods to improve the model predictions. The current study employs dimensionless quantities in an 
effort to generate more robust models. One previous study, Cronce, et.al. [1], demonstrated good agreement in 
the predicted distribution of spray profiles, but focused primarily on the combined profile overlap estimations 
and did not rigorously assess the accuaracy of the individual predicted spray distribution profiles. In an another 
study, Juslin et.al. [2] performed a regression analysis using three independent variables and an air-atomizing 
nozzle to assess the influence on each parameter on the resultant drop size. This study used an air-atomizing 
nozzle, motivated by the required atomization of a pharmaceutical spray application, which provides an 
atomizing-air parameter to primarily govern the drop size. Also, while an instructive and rigorous study, this 
effort did not investigate the spray width or distribution. While other spray characteristic regression model 
studies exist (see, for example, Solomon, et al. [7], Kirk [8], etc.), the majority of analysis has focused on drop 
size distribution alone, and to the author’s knowledge, has never included the use of dimensionless quantities. 

 
Experimental Methods 

Experimental data was collected for thousands of nozzle operating parameter combinations in order to pro-
vide a database for the developed spray characteristic models. The collected data is for a specific type of nozzle 
and was collected using Laser Sheet Imaging and Laser Diffraction commercially available systems, which are 
described in relevant detail in this section.  

The spray nozzle used in this experimental program, provided a flat-fan spray pattern. The modified Spray-
ing Systems Co. TPU nozzle (PWMD tip) was a pressure driven (hydraulic) nozzle that allows for a wide range 
of spray angles, flow capacities. This nozzle was chosen in order to provide a flat-fan spray plume, which is gen-
erally tested in a patternation-table facility and is often employed in applications involving a target-on-conveyor 
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situation. Therefore, the spray pattern is most accurately assessed in a collapsed one-dimensional form. Readers 
are referred to [3] for further description of this nozzle type and a description of standard table Patternator testing 
practices. 

Drop size measurements were acquired with a Sympatec Inc. HELOS-VARIO/KR Laser Diffraction (LD) 
system. The reader is referred to [4] and [5] for classic and current literature regarding the laser diffraction tech-
nique and the Sympatec implementation. In short, as droplets pass through a diffuse laser beam, a diffraction 
pattern is generated and the intensity distribution is measured by a 31-channel multi-element photo-detector ar-
ray. This information is then processed for all detectable droplets and a drop size distribution is generated. Post-
acquisition software, Windox 5, analysed the signals and accounted for any multi-droplet overlap in the data. For 
each distribution, statistical drop size measurements are calculated and reported. The Laser Diffraction instru-
ment was setup with the TopMicron Module-R7 lens combination that allowed for a 0.5/18.0-3500um measure-
able drop size range using a 5mW HeNe laser with fibre optic transmission. To ensure accurate measurements, 
several setup considerations were employed including: an integrated auto setup system to provide auto-
alignment, auto-focus, and auto-laser diameter adaptation; as well as positive-pressure purge-tubes to prevent 
lens wetting. The nozzle was setup on an overhead traverse with the major spray axis normal to the LD laser. 
The nozzle was then traversed in a quasi-steady manner so that the spray plume passed completely through the 
measurement domain at a constant nozzle to laser distance of 200mm. See Figure 1 for a schematic of this test-
ing setup. 

 

    
Figure 1 Laser Diffraction Testing Setup Schematic  Figure 2 Laser Sheet Imaging Setup Schematic 

 
Spray pattern distribution data were collected using a LaVision Laser Sheet Imaging (LSI) system. This sys-

tem provided a time-efficient and high spatial-resolution method to characterize the planar spray coverage and 
distribution. In this setup, demonstrated in Figure 2, the LSI system was setup to measure normal to the spray 
axis over a wide spray-width range that was able to accommodate major axis widths in excess of the maximum, 
which was found to be 850mm. Laser sheet intensity correction was used to account for the non-uniform, Gauss-
ian beam intensity variation across the laser sheet by acquiring multiple pre-test images using an oil-smoke gen-
erator to provide uniform drop seeding. An overhead traverse was used to change the spray distance to the laser 
sheet from 100-305mm, which was incorporated as an input parameter to the regression models. A minimum of 
100 instantaneous images were acquired and ensemble averaged to generate a mean spray distribution at each 
combination of input parameters, with a pixel resolution of 0.583mm/pixel. 

In the current experiments, Mie light scattering was used. These results are therefore inherently representa-
tive of the distributed sprayed droplet cumulative surface-area; however, preliminary experiments showed that 
these surface area distributions (Mie scattered light intensity) are adequately representative of volume distribu-
tions (Laser -nduced Fluorescence, LIF, light intensity) for these sprays. This is demonstrated in Figure 3; ac-
cordingly, the assumption will be made that the LSI data are representative of the average planar volume distri-
bution. Furthermore, previous experiments [1] have confirmed LSI-LIF volume distributions to accurately match 
one-dimensional table patternation volume distribution results for these types of sprays. The two-dimensional 
LSI spray distributions were summed in the minor-axis direction (vertically in Figures 3a and 3b) to arrive at 
one-dimensional spray distributions to be used in the models, such as in Figure 3c. 
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Figure 3 Two dimensional spray pattern distributions using (a) Mie and (b) Laser Induced Fluorescence, LIF, 
techniques. (c) Resultant one-dimensional spray pattern distributions, summed over the minor spray axis 
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Model development Methods 
Two methods have been utilized in developing the regression models for the drop size and distribution pro-

file data; namely, dimensional and a nondimension (similitude) approaches. In each case, a range of independent 
variables was investigated and will serve as the input parameters for the resultant output spray characteristic pre-
dictor models; Table 1 lists the dimensional parameters and the investigated ranges, note that the z-direction is 
in-line with the spray axis. For the drop size database, 1046 individual parameter combinations were tested; for 
the spray distribution database, 6002 independent variable combinations were collected. As noted in Table 1, 
regression models were developed for the entire database of experimental results, and also for a subset of data 
that only included the results using only water. Columns with a single value indicate a parameter held constant. 
 
Table 1 Dimensional Independent Variable (input) Parameter Domain 

Parameters  Drop Size Parameter Range Distribution Parameter Range 
   All Data Water Only All Data Water Only 

Pressure (bar) P 1.38 20.7 1.38 20.7 1.38 20.7 1.38 20.7 
Capacity (mL/min@2.76 bar) c 9.5 113.6 9.5 113.6 9.5 113.6 9.5 113.6 
Spray Angle (deg) SA 65 110 65 110 65 110 65 110 
z-Distance (mm) z 203 203 100 305 100 305 
Viscosity (Ns/m) ν 0.001 0.15 0.001 0.001 0.15 0.001 
Surface Tension (N/m) σ 0.03 0.0725 0.0725 0.029 0.0725 0.0725 
Density (kg/m3) ρ 998 998 998 998 

 
In order to develop a model for the one-dimensional spray distribution results that is scalable and yet low-

order, a Fast Fourier Transform (FFT) technique was used to fit a trigonometric polynomial to each distribution 
profile. Equation 1 provides the FFT-fit equation form; note that the FFT sine component provides a solely im-
aginary contribution, and is therefore omitted. After detailed assessment of the raw and fit profiles, it was 
deemed adequate to use only the first seven FFT coefficients, n=0 to 6, thus reducing the order of the model (i.e. 
a reduced set of regression model fit parameters that corresponding to the FFT coefficients).  

 

y(x) = a0 + an
1

∞

∑ cos(x)      (1a) 

 
The reduced trigonometric polynomial fits are able to follow the raw one-dimensional profiles with an inte-

grated profile volume difference to within 98.9% from that of the symmetric profiles. The agreement using the 
full set of FFT coefficients and reduced (first seven) coefficients was indistinguishable, this justifies using the 
reduced set of FFT coefficients with no significant loss in fit accuracy. Using the reduced order fit profiles al-
lows predictor models to be generated for the FFT coefficients regardless of the profile width. This method ef-
fectively normalizes the volume distribution profiles using the only the lowest order FFT fit coefficients and 
provides consistency in the model development process. 

In order to minimize error in the distribution profiles, the raw data profiles were mirrored about a calculated 
profile center point and averaged left-to-right, resulting in a symmetric profile for fitting. The process to deter-
mine the center point of each distribution profile was through a cross-correlation of each profile with its mirror 
image; the resultant correlation peak was deemed the center point. The symmetric profile was then created as an 
average of the left-and-right sides relative to this center point. 

Finally, a trigonometric polynomial was fit to each symmetric profile, using the FFT-fit procedure described 
above. An arbitrary number of fit points were selected to provide an adequate capture of the variability of all 
profiles and visualize the results. For these efforts, the number of fit points was 25. A representative raw, sym-
metric, and fit profile are provided in Figure 4 as well as a histogram of the integrated profile volume difference 
between the symmetric and fit profiles to provide an indication of the error in the fits for all data profiles. 
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Figure 4 (a) Representative raw distribution profile, symmetric profile, and 25-point trigonometric polynomial 
(FFT) fit, (b) Histogram of profile volume-by-integration error between the symmetric and fit profiles 
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Similitude Analysis Approach 
The independent dimensional variables are used to generate relevant dimensionless quantities in order to de-

velop models that use relations of the independent variables rather than the input variables themselves to predict 
the spray characteristics. In doing so, an assessment of the relative importance of the dimensional variables may 
be conducted. 

First, a set of potentially relevant dimensionless quantities was selected. These parameters are provided 
along with brief descriptions below describe the balance of forces inherent to each dimensionless parameter, see 
Equations 2-6 for definitions of these quantities.  
 

Reynolds Number ∝  Inertial Forces
Viscous Forces

   Re = ρVL
σ

   (2) 

Weber Number ∝  Inertial Forces
Surface Tension Forces

   We = ρV 2L
σ

   (3) 

Ohnesorge Number ∝  Viscous Forces
Inertial * Surface Tension Forces

 Oh = µ
ρσL

= We
Re

   (4) 

Froude Number ∝  Inertial Forces
Gravitational Forces

   Fr = V
gL

   (5) 

Etros Number ∝  Bouyancy Forces
Surface Tension Forces

   Eo =
ρ − ρair( )gL2

σ
   (6) 

 
In Addition to the dimensionless quantities listed above, potentially relevant dimensional quantities were calcu-
lated and used in the development of some models. First, the nozzle rated capacity (i.e. flow rate at 40psi) which 
is dictated by the nozzle exit orifice area, was reduced to a characteristics length scale, C and used as the charac-
teristics length scale, L. Next the spray distance and rated spray angle were used to calculate an idealized spray 
width, wi. Finally, drag force was calculated using the capacity as the characteristic area and Cd=0.1. 
 

Exit Orifice Characteristic Length   C = capacity
π

    (7) 

Ideal Width     wi = 2z sin 90 − spray_ angle
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−2

−1  (8) 

Drag Force     FD = ρairV
2ACd

2
    (9) 

 
In the development of the final regression models, this set of dimensionless (and calculated dimensional) varia-
bles was reduced to only those that were determined to have a significant effect on the model outputs. The re-
duced models, using only those most important variables, are provided explicitly in the results section. Table 2 
provides the data of Table 1 converted into relevant calculated dimensionless and dimensional values as de-
scribed in Equations 2-9. 
 
Table 2 Calculated and Dimensionless Independent Variable (input) Parameter Domain 

Parameters  Drop Size Parameter Range Distribution Parameter Range 
   All Data Water Only All Data Water Only 

Reynolds Number (*108) Re 0.00734 0.1356 0.3026 4.060 0.00416 0.1356 0.3026 4.060 
Weber Number (*108) We 0.4092 9.085 0.0723 3.759 0.2098 9.398 0.0723 3.759 
Ohnesorge Number (*10-4) Oh 14.00 193 0.4776 0.8880 0.0017 0.0187 0.4776 0.8880 
Froude Number We 3.167 15.06 2.239 16.14 2.239 16.14 2.239 16.14 
Etros Number (*106) We 0.5490 12.06 0.4160 4.992 0.0603 1.248 0.4160 4.992 
          
Velocity V 24.46 67.00 17.30 67.00 17.30 67.00 17.30 67.00 
Capacity C 2.018 6.083 1.756 6.083 6.083 6.083 1.756 6.083 
Ideal Width wi 0.2589 0.5804 0.2589 0.5804 0.8712 0.8712 0.1295 0.8712 
Drag Force (*104) Fd 0.1391 3.131 0.0174 3.131 0.0689 3.131 0.0174 3.131 

 
Regression Model Methods 

In the regression model development, the independent variables were used in a regression model directly. 
The models were developed both for the dimensional parameters and non-dimensional parameters in order to 
find the optimal arrangement. Equations 10-14 were used in best-fit optimization schemes using the matlab func-
tion, nlinfit, to arrive at an optimal relationship between all parameters.  
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y( f1... fp ) = r0 + rp
1

p

∑ fp          (10) 

y( f1... fp, f1... fq ) = r0 + rp fp
1

p

∑ + rq
1

q

∑ fq
2        (11) 

y( f1... fp ) = r0 + rp fp
2

1

p

∑          (12) 

y( f1... fp, f1... fq ) = r0 + rp fp
1

p

∑ + rq
1

q

∑ fq
n        (13) 

y( f1... fp ) = r0 + rp
1

p

∑ fp
n          (14) 

 
In equations 10-14, the p subscript indicates the number of independent parameters included in the regression 
model; additionally, all models included an offset parameter r0. For models involving a linear (f1) and nonlinear 
terms (f2 or fn), the q subscript indicates the second regression coefficient, where p=q for all f. In all, there are 
count(r0+rΣp+rΣq)=(1+Σp+Σq) regression coefficients for each model. The included parameters were then re-
duced in order to eliminate non-influential parameters without any significant loss in model accuracy; which 
indicated an insignificant correlation between any eliminated parameter and the output result. 

Finally, an assessment of the most accurate regression models was conducted based on the mean and stand-
ard deviation of the model output parameters to the known spray characteristics with a preference given to the 
lower order linear models for simplicity. In the end, only regression models of the form of Equations 10 and 11 
were found to be most accurate. This finding is significant in that higher-order models did not necessarily arrive 
at an increase in accuracy. 

 
Results and Discussion 

The results of the model development processes outlined above will first be used to explain the optimal 
model selection process for each modelled parameter (drop size, spray width, spray distribution), and then evalu-
ate the specific accuracy of the best models. Each these modelled parameters will be shown for the dimensional 
and non-dimensional regression model cases for comparison; and also for a subset of input parameters which 
only includes the data for water as a spray material. These subset models are similar to the full models but with a 
fixed material viscosity and surface tension, often allowing for higher accuracy predictions. 

 
Drop Size 

For the purposes of this paper, a model for the Sauter Mean Diameter (D32) drop size is developed. The 
model optimization was found to be similar across all drop size distribution statistical values. Figure 5 provides 
the results of the regression model (solid red line) for the dimensional and non-dimensional parameter inputs as 
well as an error histogram for each model. Additionally, dashed lines are provided in Figures 5a and 5b to show 
the 10% and 30% error ranges. The reduced order regression models used in the development of the results of 
Figure 5 are provided in Equations 15a and 15b and use the regression model form of Equation 10. 

 
D 32 (SA,Cap,Pres,Visc,SurfTen) = (219)+ (−0.495)SprayAngle + (0.464)Capacity
                                 + (−4.92)Pressure + (196)Viscosity + (−390)SurfaceTension

  (15a) 

D32 (Re,We,Fr,Fd,Eo) = (205)+ (−3.85e − 6)Re + (−8.72e −8)We
                                                + (−7.36)Fr + (−2.06e − 4)Fd + (7.79e − 6)Eo

         (15b) 
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Figure 5 Linear regression model for D32 of various material rheologies, 1046 data points, using: (a) dimension-
al parameters (b) non-dimensional parameters and the (c) error histogram for each fit 
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The results demonstrated in Figure 5 show that a dimensionless parameter based model while similar in accuracy 
to the dimensional model, does provide an equivalently accurate model. Both models exhibit a double-peaked 
error histogram indicating that there is a dual-category separation in the accuracy of the models; it is not appar-
ent what causes this divide. While no significant benefit to the dimensionless model is found here, the remainder 
of models outputs to exhibit a benefit and therefore this model will be selected as preferred. In Figure 5b, the 
regression model can be seen to provide a D32 prediction within 30% of the measured value for the vast majority 
of data points. 
 In an effort to develop a more accurate model for a subset of the Figure 5 data, a model was generated re-
stricting the input data to that of water, which is the most often spray material for these nozzles. Figure 6 pro-
vides the results of this subset’s regression model, using the same equations (eqn. 15a and 15b) but without any 
material rheology differences. 
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Figure 6 Linear regression model for D32 of the water, 189 data points, using: (a) dimensional parameters (b) 
non-dimensional parameters and the (c) error histogram for each fit 

 
It is clear from Figure 6 that the model for the subset of water data has an improved result with the non-

dimensional model and results in an accuracy error of approximately 10% or less. The regression model is pro-
vided in Equation 16, and the dimensionless parameters included in the model are shown. 

 
D32 (Re,We,Fr,Fd,Eo) = (173)+ (−1.51e − 6)Re + (1.55e − 6)We
                                                + (−8.00)Fr + (−0.007)Fd + (4.38e − 5)Eo

    (16) 

 
Spray Width 

The major-spray-axis spray width was modelled separately from the spray distribution profile shapes; this 
allowed for a normalized width distribution profile to be used in the FFT fits. Thus, the spray width was mod-
elled in a manner similar to that of the drop size results. However, it was found that the non-dimensional model 
input parameters could be further reduced with no loss of accuracy. The fit equation for the dimensional model 
and dimensionless model followed the form of Equation 10 and are provided in Equations 17a and 17b. 

 
w(SA,Cap,Pres, z,Visc,SurfTen) = (−472)+ (5.73)SprayAngle + (−0.106)Capacity
                   +(13.3)Pressure + (1.19)z + (194)Viscosity + (−1745)SurfaceTension

  (17a) 

w(wi,Re,We,Fr) = (−135)+ (704)wi + (−2.85e − 6)Re + (2.79e − 7)We + (18.05)Fr          (17b) 
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Figure 7 Linear regression model for spray width for a range of material rhelogies, 6002 data points, using: (a) 
dimensional parameters (b) non-dimensional parameters and the (c) error histogram for each fit 

 
Figure 7 demonstrates the goodness of fit for the dimensional and non-dimensional regression models. More 

so than the drop size results, there is a clear benefit to the non-dimensional model, with the accuracy of the di-
mensionless model being within approximately within ±30% of the actual measured spray width, albeit with a 
notable portion of the estimated results still falling outside of the 30% intervals. 
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A reduced set of data containing only the results of the spray width for water was again generated and a sub-
set regression model was developed. Equations 18a and 18b provide the regression model equations and Figures 
8a and 8b demonstrate the goodness of fit for the dimensional and non-dimensional fit models. Clearly, the water 
models fit the data to within ±30% of the actual measured spray width; with an improvement over the more gen-
eral models. Figure 8c shows the distribution of error form the measured and modelled subset of water-only data. 

 
w(SA,Cap,Pres, z) = (−0.476)+ (5.37e − 3)SprayAngle + (−2.89e − 4)Capacity
                                                                      +(0.0108)Pressure + (1.57e − 3)z

   (18a) 

w(wi,Re,We,Fr) = (−0.209)+ (0.787)wi + (1.36e − 9)Re + (−1.20e − 9)We + (0.0269)Fr          (18b) 
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Figure 8 Linear regression model for spray width for water, 918 data points, using: (a) dimensional parameters 
(b) non-dimensional parameters and the (c) error histogram for each fit 

 
As with the drop size regression models, the dimensional and non-dimensional models provide good model 

estimates with the dimensionless model providing a notably better accuracy. The dimensionless model has fewer 
large error data points, as demonstrated in Figure 8c, and is thus the best model result. 

 
Spray Distribution 

Finally, a regression model was developed for the first seven FFT coefficients for the symmetric fit profiles 
described in the Model Developments Methods section and demonstrated in Figures 4a and 4b.  

In a similar manner to that described for the Sauter Mean Diameter and Spray Width results, a regression 
model was developed for each of the FFT coefficients. For brevity of this conference paper, each model (seven 
total for an, where n=0 to 6) is not explicitly shown here. However, Equations 19a and 19b demonstrate the final 
form used in formulating a best-case regression model for each case.  

 
an (SA,Cap,Pres, z,Visc,SurfTen) = r0 + (r1)SprayAngle + (r2 )Capacity + (r3)Pressure + (r4 )z
                                                                                      + (r5 )Viscosity + (r6 )SurfaceTension

 (19a) 

an (Re,We) = (r1)Re + (r2 )We + (r3)Re
2 + (r4 )We

22              (19b) 
 
Notably, the dimensional model followed the form of Equation 10, as was the case for the Sauter Mean Diameter 
and Spray Width. However, the non-dimensional best-case regression model followed the second order form of 
Equation 11 with a reduced set of input variables, namely, only Re and We, and with no offset.  

The results of the many spray distribution profiles, over six thousand total, do not lend themselves to be suc-
cinctly provided in detail, however, three representative profiles are provided in Figures 9a-c. Figure 9a repre-
sents a good model estimate result, Figure 9b represent a somewhat bad result, and Figure 9c represents a bad 
input profile leading to a bad model result. 

The results in Figure 9a demonstrate a very accurate regression model results that shows the dimensional 
(purple) and non-dimensional (teal) profiles falling just below the target symmetric fit profile (black). The bad 
example of Figure 9b shows both models fall well below the fit-profile which closely matches the raw data pro-
files. As can be seen in Figure 9d, there were a fairly well distributed number of over- and under-estimated spray 
distribution profile results. Furthermore, Figure 9c demonstrates a common bad raw profile which exhibited a 
double-peak distribution profile, this is represented in the real spray by a “heavy-edges” spray pattern which is a 
non-desirable results. In future efforts, these types of profiles will be diagnosed and removed prior to final for-
mulation of the regression model. This simple pre-model filtering of bad profiles will serve to remove many of 
the significant outliers in both the spray width and spray distribution error histograms. 
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Figure 9 Representative spray distribution profile regression model results for (a) a good model results, (b) a bad 
model results, and (c) a bad input distribution result. (d) Histogram of the integrated volume error of each profile 
 
Summary and Conclusions 

The results of this work demonstrate the development of regression models to predict the spray drop size, 
spray width, and spray distribution over a range of independent input variables. The models are developed for 
dimensional and non-dimensional quantities and show an improvement in accuracy by using non-dimensional 
quantities. In either case, the results demonstrate predicted values to within approximately 30% or better of the 
measured values for the variable material data. This agreement increases to 10% for a regression models built 
from a subset of measured results using only water.  

The optimal regression models have been shown to be of a linear regression model form for all cases except 
the model built for the non-dimension spray distribution profile data, which benefited from the addition of se-
cond order terms. 

For future efforts, it is expected that the spray distribution profile predictions could be significant improved 
by removing distribution profiles with heavy edges as described in the results section, see Figure 9c. One possi-
ble solution may be to examine the fluctuation or rms of the distribution profile and then removing the high-rms 
profiles from the measured results database. Alternatively, an examination of the drop size results could provide 
an indication of poorly atomized sprays, which would then lead to a poor spray distribution and removal from 
the regression model input database. 

 
Acknowledgements 

The authors would like to thank Wojciech Kalata of Spraying Systems Co. for his past efforts on this pro-
ject, as well as Stephen O’Donnell from Purdue University for his assistance in the collecting the large database 
of spray characteristics. 

 
References 

1. Cronce, K., Kalata, W., Schick, R.J., Model to Predict Hydraulic Flat Spray Distribution, ILASS 
Americas, 21st Annual Conference on Liquid Atomization and Spray Systems, Orlando, FL, May 2008. 

2. Juslin, L., Antikainen, O., Merkku, P., Yliruusi, J., Droplet size measurement: II. Effect of three inde-
pendent variables on parameters describing the droplet size distribution from a pneumatic nozzle stud-
ied by multilinear stepwise regression analysis, International Journal of Pharmaceuticals, Vol. 123. Pp. 
257-264, 1995. 

3. Spraying System Co., Industrial Spray Products, Catalog 70, pp.A5, pp.C21. 
4. Sympatec HELOS VARIOS/KF Manual. 
5. Heuer, M., Leschonski, K., Results obtained with a new instrument for the measurement of particle size 

distributions form diffraction patterns, Particle Characterization, Vol. 2, pp. 7-13, 1985. 
6. LaVision SprayMaster Manual. 
7. Solomon, K.H., Kincaid, D.C., Bezdek, J.C., Drop Size Distributions for Irrigation Nozzles, Transac-

tions of the ASAE, Vol. 28(6), pp. 1966-1974, Nov.-Dec., 1985. 
8. Kirk, I.W., Measurement and Prediciton of Atomization Parameters from Fixed-Wing Aircraft Spray 

Nozzles, Tansactions of the ASABE, Vol. 50(3), pp. 693-703, March, 2007. 

(a) 

(c) (d) 

(b) 


