
CATALOG TABLE OF CONTENTS

CARWASH SPRAY PRODUCTS

THANK YOU FOR YOUR INTEREST IN OUR SPRAY PRODUCTS

Our high-quality spray products that can help you improve your car wash operations are available from most OEMs or aftermarket suppliers.

@ CATALOG TABLE OF CONTENTS

TABLE OF CONTENTS

Introduction	ᢙ A2
Technical Reference	ᢙ A4
Spray Nozzles	⊘ B1
Spray Guns	() C1
Air Nozzles	@ D1
Accessories	⊘ E1
Index	⊘ i-1

INTRODUCTION

SPRAY NOZZLE PERFORMANCE DRIVES CAR WASH QUALITY, COST EFFICIENCY AND CUSTOMER SATISFACTION

As a business owner, you may not spend much time thinking about small components like spray nozzles, but the fact is that your car wash is only as good as the spray your nozzles deliver. Depending on how you select and maintain these components, they can be a source of major savings or a needless expense.

Worn nozzles or using the wrong type of nozzle can easily spray up to 30% more water and chemicals than necessary, which can amount to tens of thousands of dollars each year. The three examples on the adjacent page provide typical annual car wash operating expenses. These examples only calculate the cost of excess water and detergents caused by using nozzles spraying over capacity. Don't forget to factor in all of the additional expenses related to an inefficient spray system:

- Lost customers as a result of a poor quality wash or excessive downtime
- Excessive wastewater and disposal costs

- Additional power used by pump equipment to keep up with higher flow rates or pressure losses
- · Unnecessary labor from increased maintenance

By optimizing your spray system, you can turn these unnecessary expenses into savings opportunities.

CONVEYOR CAR WASH

Average cars per day:	120
Days open per year:	365
Flow per car:	40 gal
Liquid used:	1,752,000 gal
Wasted water:	262,800 gal
Wasted chemical:	2,300 gal

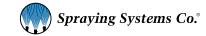
Annual cost of wasted water and chemical: \$24,314*

INBAY AUTOMATIC CAR WASH

Number of bays:	2
Average cars per day per bay:	40
Days open per year:	365
Flow per car:	30 gal
Liquid used:	876,000 gal
Wasted water:	131,400 gal
Wasted chemical:	1,150 gal

Annual cost of wasted water and chemical: \$12,157*

SELF-SERVE CAR WASH


Number of bays:	6
Hours of utilization:	
(18 hours per day x 365 days per year x	
15% utilization)	985
Flow rate:	2.5 gpm
Liquid used: (150 gph x 985 hours per year x 6 bays)	886,950 gal
Wasted water:	133,042 gal
Wasted chemical:	1,164 gal

Annual cost of wasted water and chemical: \$12.305*

ASSUMPTIONS

Average cost of water:	US\$5.00/1,000 gal
Average cost of chemical:	US\$10/gal
Dilution ratio:	40:1
Chemical usage:	35%
Excess liquid sprayed:	15%

*Based on US dollar and applications

NOZZLE SELECTION GUIDE

Spray Pattern		Spray Angle	Application	Nozzles	Page Number
	FULL CONE Uniform, round and full spray pattern with medium to large drops. Good for covering larger areas.	15° to 125°	Presoak and covering larger areas.	FullJet®	B2
	HIGH PRESSURE FLAT SPRAY Provides high and uniform impact capabilities. Even spray pattern eliminates the need to overlap patterns from adjacent nozzles.	5° to 80°	Pressure wash or first rinse. Any application where high impact is needed to remove dirt or detergent.	WashJet®	B4
	FLAT SPRAY Overlapping or aligning spray patterns from adjacent sprays produces uniform distribution.	15° to 110°	Chemical arches or anywhere spray nozzles are aligned to overlap to produce a uniform distribution.	VeeJet®	B13
	DEFLECTED NON-TAPERED FLAT SPRAY Medium-sized drops at lower pressures with narrower spray angles. High impact. Large free passage reduces clogging.	15° to 50°	Rinse arches and presoak, especially when recycled water is being used. Excellent for any application in which adjacent spray patterns do not overlap.	FlatJet®	B20
	DEFLECTED TAPERED FLAT SPRAY Medium-sized drops with tapered edges and wide spray angles at lower pressures. Can overlap patterns from adjacent sprays for even coverage. Large free passage reduces clogging.	83° to 153°	Rinse arches and presoak, especially in stages that use recycled water. Good for overlapping adjacent sprays to produce uniform coverage.	FloodJet®	B22
	SOLID STREAM Uniform stream provides maximum impact.	0°	Cleaning grills, rocker panels and wheel wells.	WashJet	B10
	SELF-ASPIRATING Flat spray pattern, mixes surrounding air with premixed liquid to generate foam. Medium to medium-fine foam stays on vehicle longer. Keeps energy costs down because compressed air is not required.	0° to 80°	Detergent application	FoamJet®	B26

NOZZLE SELECTION GUIDE

Wash Stage		Spray Nozzle Characteristics for Best Performance	Recommended Nozzles	Page Number
	Presoak	Pressure: low Flow Rate: low Impact: low Angle: wide Drop Size: large	FullJet® VeeJet® (PVDF) FloodJet® FoamJet®	B2 B18 B22 B26
	Undercarriage	Pressure: low Flow Rate: high Impact: medium Angle: medium Drop Size: large	VeeJet FlatJet®	B13 B20
	Wash	Pressure: high Flow Rate: medium Impact: high Angle: narrow Drop Size: large	WashJet [®]	B4
	Rinse	Pressure: low Flow Rate: high Impact: medium Angle: medium Drop Size: large	VeeJet FlatJet	B13 B20
	Wax	Pressure: low Flow Rate: low Impact: low Angle: medium Drop Size: fine	VeeJet	B13
	Final Rinse	Pressure: low Flow Rate: low Impact: low Angle: medium to wide Drop Size: fine	VeeJet FloodJet	B13 B22
	Self-Serve	Pressure: high Flow Rate: low to medium Impact: high Angle: narrow Drop Size: medium to large	WashJet	В4

SPRAY PRESSURE AND IMPACT

The cleaning effectiveness of a spray nozzle, impact, or the total force of the spray as it hits the vehicle, are the main criterias to evaluate spray pressure and impact. The true measure of cleaning effectiveness is impact per square inch. Maximizing the cleaning impact involves increasing both the mass of the spray and its velocity, which is accomplished by increasing flow rate in gallons (liters) per minute, droplet size or psi (bar).

Most people only think about spray pressure when it comes to impact, but increasing pressure can sometimes be counterproductive. High pressure produces smaller

$$I = K \times Q \times \sqrt{P}$$

1	Total theoretical spray impact	kg
K	Constant	.0526
Q	Q Flow rate	
Р	Liquid pressure	bar

UNIT IMPACT PER SQ. INCH OF A FLAT FAN SPRAY PATTERN AT 12" FROM THE NOZZLE

Spray Angle	% of Theoretical Total Impact	
15°	30%	
25°	18%	
35°	13%	
40°	12%	
50°	10%	
65°	7%	
80°	5%	

droplets, which have less mass and velocity, and therefore less cleaning impact. As a general rule of thumb, increasing flow rate is much more effective than increasing pressure. Doubling the flow rate increases impact as much as 100%, while doubling pressure provides only 40% more impact.

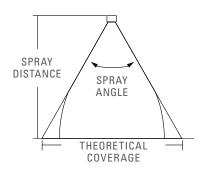
The downside of increasing flow rate is increased water consumption, and the biggest operating cost today for a car wash is water. At a time when sustainability, water conservation and lower operating costs are high priorities, it is possible to increase pressure and maintain cleaning effectiveness with premium, high-pressure nozzles.

Flow Rate	0.95 gpm	0.95 gpm	1.9 gpm
	(3.6 lpm)	(3.6 lpm)	(7.2 lpm)
Pressure	400 psi	800 psi	400 psi
	(28 bar)	(55 bar)	(28 bar)
Total Theoretical Spray Impact	1.0 lbs (.07 bar)	1.4 lbs (.10 bar)	2.0 lbs (.14 bar)
		40%	100%

STANDARD VS. PREMIUM HIGH-PRESSURE NOZZLES

Premium, high-pressure IMEG® WashJet® nozzles are engineered to provide up to 25% greater impact than standard MEG WashJet nozzles at the same flow rate and system pressure. Though slightly more expensive than standard MEG nozzles, premium IMEG nozzles pay for themselves in enhanced cleaning efficiency and water savings. They also have a longer wear life due to the reduced system pressure and need to be replaced less frequently, leading to improved total cost of ownership.

	Standard MEG	Premium IMEG
Impact	17 psi	17 psi
Pressure	(1.2 bar)	(1.2 bar)
System	1,500	1,125
Pressure	(103.4 bar)	(77.6 bar)
Flow Rate	2.10 gpm (7.9 ltr)	1.82 gpm (6.9 ltr)

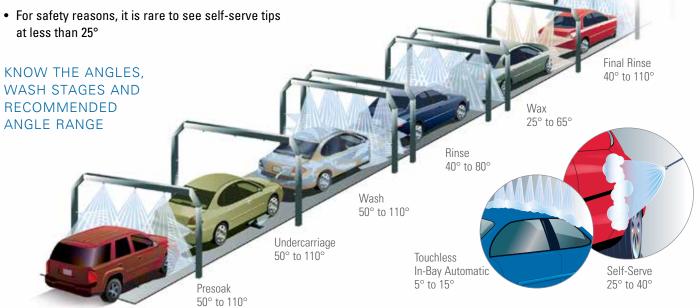

25% More Impact

13% Less Water & Chemicals

SPRAY DISTANCE

Spray distance dramatically affects impact, and 6 to 8 inches (15.25 to 15.35 cm) is the ideal distance to achieve the best performance from your spray nozzles. Increasing the nozzle distance just 6 inches (15.25 cm) from the car's surface will decrease impact by 50%. Why? Because droplet velocity is reduced due to the frictional drag effects of the air and because the spray pattern is much larger. The same impact force over a larger area results in less impact pressure.

When determining spray distance, use a worst-case scenario. First, estimate what is likely to be the shortest distance from a vehicle to the spray nozzle. Then, adjust nozzles so that full coverage and overlap is possible with a vehicle at the shortest distance. This will ensure full coverage and overlap with all vehicle types.


THEORETICAL SPRAY COVERAGE

Spray	At various distances in inches from nozzle orifice					
Angle	6	8	10	12	15	18
15°	1.6	2.1	2.6	3.2	3.9	4.7
25°	2.7	3.5	4.4	5.3	6.6	8.0
40°	4.4	5.8	7.3	8.7	10.9	13.1
65°	7.6	10.2	12.7	15.3	19.2	22.9
80°	10.1	13.4	16.8	20.2	25.2	30.3
110°	17.1	22.8	28.5	34.3	42.8	51.4

SPRAY ANGLE AND COVERAGE

Spray angle is the dispersion or width of the spray after it leaves the orifice. We are often asked if pressure affects the spray angle, and it definitely does. At high pressure, spray angles can widen significantly and produce low-impact misting of the spray as it fans out at the edges. Narrower spray angles have more cleaning force per square inch (centimeter), but they can peel some pin striping, moldings and poor paint jobs. Also, depending on the type of wash application, recommended angles vary:

- In the hands of an experienced operator or in a touchless in-bay automatic, 5° to 15° nozzles do an excellent job of removing ice, bugs and grime
- Wide angle nozzles from 50° to 110° are best for the presoak stage in which full coverage of the vehicle is more important than the impact or quantity of water used

HOW TO MAINTAIN SPRAY NOZZLE PERFORMANCE

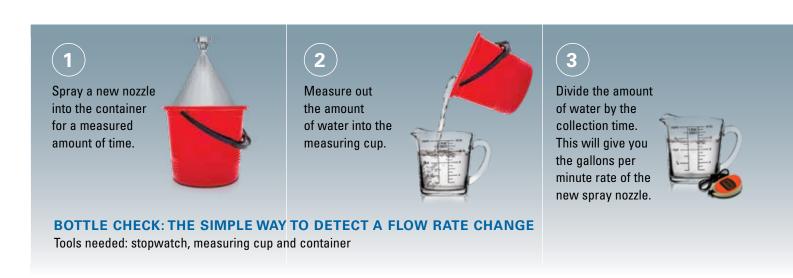
Selecting the right nozzle for each wash stage is just the first step toward optimizing your spray system. Follow these tactics to help extend the service life of your nozzles:

1. INCORPORATE NOZZLE INSPECTION INTO YOUR REGULAR MAINTENANCE PROGRAM

Damaged spray nozzles waste water and chemicals, decrease cleaning coverage of the vehicles and increase workload on your pumps. With thousands of dollars of profits at stake, you'll want to regularly monitor your spraying system to reveal potential problems. Some nozzle problems, like corrosion or caking, are easy to detect with a visual inspection, but a worn nozzle, the most common problem for a car wash, is almost impossible to detect with the human eye.

Watch for these clues to indicate spray nozzle problems:

- Change in pump performance. If you have a positive displacement pump, check the pressure gauge for a drop in system pressure. If yes, the flow rate will remain constant, but spray velocity and impact will lessen. You may not be wasting water, but the quality of your wash will suffer. Some operators will adjust the unloader valve and use it as a regulator to increase pressure, but this can create high-pressure spikes and damage the pump
- Increased chemical consumption. As the nozzles wear and pressure/impact decreases, some operators increase the concentration of the detergent – a much more costly solution than replacing nozzles
- Deterioration of spray pattern. Inspect the spray pattern for uniformity. When nozzles are damaged, worn or


- clogged, the spray pattern is destroyed. Streaks develop and the spray will be heavier or lighter throughout the pattern. The result is inadequate or inconsistent coverage of the vehicle. Customers will experience uneven cleaning or drying, so you'll want to make sure your nozzles are replaced before reaching this point. Customer satisfaction and retention depends on it
- Flow rate change. If you have a centrifugal pump, an increased flow rate indicates nozzle wear. System pressure will remain the same, enabling you to retain some quality in your wash, but your system will be highly inefficient, wasting costly water and chemicals

2. DECREASE SPRAYING PRESSURE

Where circumstances permit, decreasing the pressure will slow the liquid velocity through the orifice and reduce the wear and corrosion rate. You can take advantage of this tactic in the presoak stage where low-pressure, small-capacity nozzles are very effective because they provide streakless, full coverage. During presoak, it's not the volume or spray impact that's critical – it's where you place the water and chemical.

3. USE CARE WHEN CLEANING SPRAY NOZZLES

Cleaning nozzles can often restore a defective spray, but

it should be done with materials that are much softer than the nozzle orifice. Use toothbrushes, toothpicks or even compressed air. Never use wire brushes, pocket knives or welder's tip cleaning rasps. It is easy to damage the critical orifice shape (or size) and end up with distorted spray patterns or excess flow. If you are faced with a stubborn clogging problem, soak the orifice in a non-corrosive cleaning chemical to soften or dissolve the substance.

4. REDUCE THE QUANTITY OF ABRASIVE PARTICLES OR THE CONCENTRATION OF CORROSIVE CHEMICALS

In some stages, you can reduce the amount of abrasive particles in the liquid to reduce wear effects. For example, use recycled water at the start of the car wash, and as the wash progresses, use less recycled water until the final rinse where only fresh water is used. Not only does this provide a better quality wash for your customers, but it also reduces the wear on nozzles at the final rinse stage. In stages where chemicals are used, the corrosive activity of a solution may be reduced by using different concentrations or temperatures, depending on the chemicals involved.

5. ADD LINE STRAINERS OR USE SPRAY NOZZLES WITH BUILT-IN STRAINERS

When using fresh or recycled water, orifice deterioration and clogging are typical problems. Strainers or spray nozzles with built-in strainers are highly recommended in the presoak cycle. Line strainers not only extend the life of the nozzle but the pump as well. The strainer's screen traps the dirt or unwanted material, and it should be made of stainless steel

for strength and corrosion resistance. The screen is critical to the operation of the strainer, and an extra screen should be kept on hand for each strainer installed.

WHAT CAN YOU USE TO CLEAN YOUR NOZZLES?

Yes	No
Toothbrush	Wire Brush
Toothpick	Pocket Knife
Compressed Air	Welder's Tip Cleaning Rasp

COMMON CAUSES OF SPRAY NOZZLE PROBLEMS

EROSION/WEAR LIFE

Erosion is the single biggest source of nozzle problems in car wash operations. Gradual abrasion of material from the spray nozzle orifice and internal flow passages cause them to enlarge and/or become distorted. As a result, flow usually increases, pressure may decrease, the spray pattern becomes irregular and liquid drops become larger. Spray pressure, fluid abrasiveness, nozzle orifice size and chemical compatibility are just a few of the factors that play a role in a nozzle's wear life.

APPROXIMATE ABRASION RESISTANCE RATIOS

Nozzle Material	Resistance Ratio
Brass	1
PVDF	3
Stainless Steel	4 – 6
Hardened Stainless Steel	10 – 15
Ceramics	90 – 200

CAKING

Build-up of material on the inside and outer edges or near the orifice is caused by liquid evaporation. A layer of dried solids remains and obstructs the orifice or internal flow passages.

CLOGGING

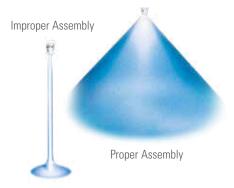
Unwanted solid particles can block the inside of the orifice. Flow is restricted, and spray pattern uniformity is disturbed. This is often a problem when re-circulated water is insufficiently filtrated.

ACCIDENTAL DAMAGE

Damage can occur if a spray nozzle is dropped or scratched during installation, operation or cleaning. This is a common occurrence in self-service car washes, since many customers often let spray wands fall onto, or scrape against, the concrete floor of the bay.

Damaged

CORROSION


Spray nozzle material also can break down due to the chemical qualities of the sprayed material or the environment. The effect is similar to that caused by erosion and wear, with possible additional damage to the outside surfaces of the spray nozzle.

New

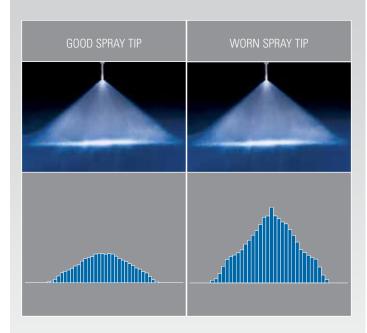
IMPROPER ASSEMBLY

Some spray nozzles require careful re-assembly after cleaning so that internal components such as gaskets, O-rings and vanes are properly aligned. Improper positioning or even over-tightening of nozzle caps can strip threads and can cause leaking and inefficient spray performance.

REPLACING WORN NOZZLES

Inspecting and maintaining your nozzles on a regular basis will help identify wear and extend service life. However, wear will occur over time and the only solution is to replace your nozzles.

Here are a few guidelines to help you determine the optimal replacement interval:


- Are worn nozzles affecting product or process quality?
 If so, replace nozzles as soon as any wear is evident
- Is water conservation a priority? If so, replace nozzles as soon as wear is evident
- How much are you spending by continuing to use worn nozzles? How do the additional costs for water, soap, electricity and wastewater disposal compare with the cost of replacement nozzles?

For more information on nozzle maintenance and replacement, visit spray.com. Or, contact your local sales engineer for assistance developing a nozzle maintenance program.

WEAR LIFE: PUTTING NOZZLES TO THE TEST

Most high-pressure nozzles are currently constructed of hardened stainless steel, however, not all manufacturers use the same hardening process, which can lessen the durability of the material. To prove this point, we tested our WashJet® nozzles, made of hardened stainless steel, against a competitor's similar nozzle. The competitor's nozzle reached a 10 percent wear point more than twice as fast as the WashJet nozzle.

Nozzles with ceramic orifices are able to withstand harsh cleaning chemicals and high temperatures. Nozzles constructed of PVDF, a very tough plastic material, are good choices for high-temperature wax sealing applications.

Spray patterns of both tips show little difference. Spray collection in tubes gives dramatic evidence of 30% increase in capacity.

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS

CAN I USE A STANDARD "FAN" NOZZLE FOR THE HIGH-PRESSURE WASH PORTION OF MY CAR WASH?

A standard VeeJet® or UniJet® "fan" type nozzle is not the best choice for high-pressure applications. The orifice is designed to provide a great spray pattern at lower pressures. The WashJet® product line, however, was designed specifically to operate in high-pressure applications and will provide improved cleaning effectiveness and a better distribution of impact across the entire spray pattern.

HOW OFTEN SHOULD I REPLACE MY SPRAY NOZZLES?

Depending on your system, we would suggest cleaning your spray nozzles every couple of months and replacing them every 6 to 12 months. Preferably, you want to replace them right before the season in which your business picks up. It is difficult to determine when your wash needs new nozzles because it depends on so many factors. How good is your filtration or recycling system? How corrosive are your chemicals? At what temperature and pressure are you spraying? All these factors affect how your nozzles wear. When you replace your nozzles, take note of the difference in spray appearance, pressure reading for your system and the flow rate. You might be surprised at how much waste in water and chemical your car wash was operating with before the replacement.

MY WATER BILL IS GOING UP AND MY BOTTLE CHECK TESTS SHOW THAT MY FLOW RATE IS UP, BUT MY NOZZLES ARE FINE AND THE SPRAY PATTERN LOOKS NICE AND CLEAN. WHAT IS GOING ON?

Simply put, your nozzles are wearing normally. A nozzle can be spraying up to 30% over capacity with no streaks or other visual problems. Close monitoring and maintenance are critical to understanding what happens to the nozzles in your system over time.

AFTER A CAR PASSES THE FOAM STICKS ON MY CONVEYOR, THE FOAM DRIPS OUT THE BOTTOM HOLE AND ALL THAT CHEMICAL IS WASTED. HOW CAN I SOLVE THIS PROBLEM?

Normally, we would recommend that every nozzle in your entire system has a check valve installed immediately behind it. That way, after the car passes and the pressure in the arch drops, the check valve shuts off preventing all the water and chemical from draining out. An additional benefit is that when the next car comes down the line, your arch is already filled and the nozzles spray immediately. Unfortunately, it is extremely difficult to use either an in-line or diaphragm type check valve on pre-generated foam. It just does not work well. One alternative is to replace your foam sticks with FoamJet® nozzles. These nozzles are self-aspirating and generate the foam after the liquid passes the check valve. This gives you the added benefit of eliminating your compressed air requirement and allows you to control the foam's capacity and spray angle.

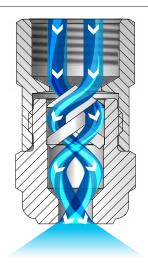
I HAVE SEEN A LOT OF PLASTIC NOZZLETIPS AVAILABLE, BUT I AM CONCERNED ABOUT WHERE TO USE THEM. WHAT ARE THE BEST APPLICATIONS FOR PLASTIC NOZZLES IN MY CAR WASH?

Plastic nozzles are perfect solutions to low pressure applications with corrosive chemicals. Constructed of molded PVDF, the plastic VeeJet spray nozzles are more economical than metal nozzles, withstand a variety of temperature ranges, and are resistant to acids, bases and oxidizing agents. Additionally, they are rated up to 500 psi (34.5 bar) and have a surprisingly high wear resistance. You can confidently use plastic nozzles in the presoak, rinse and wax sections of your wash.

9

SPRAY TIP:

If your fluid system has a lot of twists and turns, request nozzles with stabilizer vane inserts to reduce turbulence and deliver more cleaning impact.


SPRAY NOZZLES

			PAG
FullJet® Nozzles	⊘ B2	FlatJet® Nozzles	B 20
WashJet® Nozzles	⊘ B4	FloodJet® Nozzles	B 22
CERAMAX WashJet CERMEG Nozzles	⊘ B8	UniJet® Nozzles and Components	⊘ B24
Quick-Connect WashJet Nozzles	⊘ B10	Foaming	© B26
VeeJet® Nozzles	© B13	Retainers	© B29
Kynar H1/4U VeeJet Nozzles	© B16	Valves/Stabilizers	(2) B30
Kynar H1/4VV VeeJet Nozzles	⊘ B18	Strainers	⊘ B3 ⁻

FULLJET® NOZZLES

OVERVIEW: FULLJET NOZZLES

- · Solid, cone-shaped spray pattern with round impact area
- Unique vane design with large flow passages provides superior control and uniform distribution
- Standard angles: 50° to 80° at 10 psi (0.7 bar)
- Wide angles: 120° to 125° at 10 psi (0.7 bar)

FullJet GG and HH Nozzles

The liquid enters the nozzle and proceeds through the vane. The vane causes the liquid to swirl. The design of the nozzle ensures the liquid continues to swirl as it enters the orifice. The liquid breaks up as it exits the nozzle orifice, forming a well-defined cone pattern. The drops are uniform in size and distributed equally throughout the spray pattern.

FULLJET NOZZLE OPTIONS

1/8" to 1/4" male conn. Removable cap and vane

1/8" to 1/4" male conn.Removable cap and vane

1/8" to 1/4" male conn. One-piece body

нн

IDEAL FOR:

- Presoak
- · Areas requiring good coverage

MATERIAL OPTIONS

Material	Code
Brass	(none)
Mild Steel	I
303 Stainless Steel	SS
316 Stainless Steel	316SS
Polyvinyl Chloride	PVC

Other materials available upon request.

ORDERING INFORMATION

FULLJET GG, GG-W, HH AND HH-W

BSPT connections require the addition of a "B" prior to the inlet connection.

PERFORMANCE DATA: STANDARD ANGLE SPRAY

															-	
Inlet	Nozzl	e Type	Capacity	Orifice Dia.	Max. Free		ı	low Rate	Capacity	(gallons p	er minute)		Sp	ray Angle	: (°)
Conn. (in.)	GG	НН	Size	Nom. (in.)	Passage Dia. (in.)	5 psi	7 psi	10 psi	20 psi	40 psi	80 psi	100 psi	150 psi	7 psi	20 psi	80 psi
	•	•	1	.031	.025	-	_	.10	.14	.19	.26	.29	.35	-	58	53
	•	•	1.5	.044	.025	.11	.13	.15	.21	.28	.39	.43	.52	52	65	59
	•	•	2	.048	.040	.15	.17	.20	.28	.38	.52	.58	.70	43	50	46
1 /0	•	•	3	.063	.040	.22	.25	.30	.41	.57	.78	.87	1.0	52	65	59
1/8	•	•	3.5	.063	.050	.25	.30	.35	.48	.66	.91	1.0	1.2	43	50	46
			3.9	.078	.040	.28	.33	.39	.54	.74	1.0	1.1	1.4	77	84	79
	•	•	5	.078	.050	.36	.42	.50	.69	.95	1.3	1.4	1.7	52	65	59
			6.1	.094	.050	.44	.52	.61	.84	1.2	1.6	1.8	2.1	69	74	68
	•	•	6.5	.094	.063	.47	.55	.65	.89	1.2	1.7	1.9	2.3	45	50	46
1/4	•	•	10	.109	.063	.73	.85	1.0	1.4	1.9	2.6	2.9	3.5	58	67	61
		•	12.5	.125	.063	.91	1.1	1.3	1.7	2.4	3.3	3.6	4.3	69	74	68

Maximum Free Passage Diameter is the maximum diameter as listed of foreign matter that can pass through the nozzle without clogging.

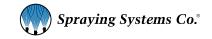
Highlighted column shows the rated pressure.

PERFORMANCE DATA: WIDE ANGLE NOZZLES

Inlet	Nozzl	e Type	Capacity	Orifice Dia.	Max Free		Flov	v Rate Cap	acity (gallo	ns per min	iute)		Sp	ray Angle	(°)
Conn.		/	Size	Nom.	Passage Dia.	5	7	10	15	20	40	80	5	10	80
(in.)	GG-W	HH-W	OIZC	(in.)	(in.)	psi	psi	psi	psi	psi	psi	psi	psi	psi	psi
	•		1.5W	.047	.025	_	_	.15	.18	.21	.28	.39	_	120	86
	•	•	2.8W	.063	.040	-	_	.28	.34	.39	.53	.73	_	120	102
1/8	•	•	4.3W	.078	.040	-	-	.43	.52	.59	.81	1.1	-	120	102
	•		5.6W	.094	.040	_	.48	.56	.67	.77	1.1	1.5	_	120	102
	•	•	8W	.094	.050	-	.68	.80	.96	1.1	1.5	2.1	-	120	103
	•		10W	.109	.050	.73	.85	1.0	1.2	1.4	1.9	2.6	112	120	103
1/4	•		12W	.125	.050	.87	1.0	1.2	1.4	1.7	2.3	3.1	114	120	103
	•	•	14W	.141	.063	1.0	1.2	1.4	1.7	1.9	2.6	3.6	114	120	103

Maximum Free Passage Diameter is the maximum diameter as listed of foreign matter that can pass through the nozzle without clogging.

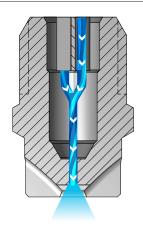
Highlighted column shows the rated pressure.


DIMENSIONS AND WEIGHTS

Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	Dia. (in.)	Hex (in.)	Net Weight (oz.)
	GG,	1/8	1.281	_	9/16	0.8
	GG-W (M)	1/4	1.563	_	11/16	1.5

Based on largest/heaviest v	ersion of	each type.
-----------------------------	-----------	------------

Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	Dia. (in.)	Hex (in.)	Net Weight (oz.)
D	HH, HH-W	1/8	0.875	0.500	-	0.5
	(M)	1/4	0.880	0.531	_	0.5


Based on largest/heaviest version of each type.

WASHJET® NOZZLES

OVERVIEW: WASHJET NOZZLES

- High pressure, high impact solid stream (0°) or flat fan spray pattern
- Spray angles of 5° to 80° at operating pressures from 300 to 5000 psi (20 to 345 bar)
- Uniform distribution by using internal guide vane to stabilize liquid turbulence
- Longer wear life and flow control accuracy with specially hardened stainless steel construction
- Patented design optimizes fluid dynamics to minimize turbulence and maximize spray performance

WashJet Nozzles

As the liquid exits through the rounded U shape of the orifice, it forms into a flat spray pattern. The distribution is even at pressures above 300 psi (20 bar).

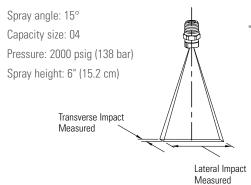
WASHJET NOZZLE OPTIONS

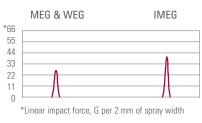
IDEAL FOR:

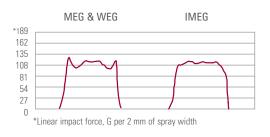
 Grill, rocker panel and wheel well cleaning

ORDERING INFORMATION

WASHJET MEG, WEG AND IMEG WITH GUIDE VANE


BSPT connections require the addition of a "B" prior to the inlet connection.


WASHJET MEG, WEG AND IMEG WITHOUT GUIDE VANE



BSPT connections require the addition of a "B" prior to the inlet connection.

MEG, WEG AND IMEG® IMPACT DATA

TRANSVERSE IMPACT

IMEG provides 25 to 100% more impact (dependent on nozzle size and angle)

LATERAL IMPACT

IMEG provides more evenly distributed impact

PERFORMANCE DATA: STANDARD ANGLE SPRAY

				Noz	zle Ty	pe a	nd Sp	ray A	Angle								Flow Ra	te Capacity	(gallons pe	r minute)		
		1,	/8 MI	EG					1,	/4 ME	G			Capacity Size				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
0°*	5°	15°	25°	40°	50°	65°	0°*	5°	15°	25°	40°	50°	65°	3126	300 psi	500 psi	750 psi	1000 psi	1500 psi	2000 psi	2500 psi	3000 psi
									•					01	.27	.35	.43	.50	.61	.71	.79	.87
									•					015	.41	.53	.65	.75	.92	1.1	1.2	1.3
•	•	•	•	•			•	•	•	•	•		•	02	.55	.71	.87	1.0	1.2	1.4	1.6	1.7
													•	025	.68	.88	1.1	1.3	1.5	1.8	2.0	2.2
•		•	•	•	•		•	•	•	•	•	•	•	03	.82	1.1	1.3	1.5	1.8	2.1	2.4	2.6
							•		•	•	•			035	.96	1.2	1.5	1.8	2.1	2.5	2.8	3.0
•		•	•	•	•	•	•	•	•	•	•	•	•	04	1.1	1.4	1.7	2.0	2.4	2.8	3.2	3.5
•		•	•	•		•	•		•	•	•		•	045	1.2	1.6	1.9	2.3	2.8	3.2	3.6	3.9
•	•	•	•	•	•	•	•	•	•	•	•	•	•	05	1.4	1.8	2.2	2.5	3.1	3.5	4.0	4.3
•		•	•	•	•	•	•	•	•	•	•	•	•	055	1.5	1.9	2.4	2.8	3.4	3.9	4.3	4.8
•	•	•	•	•	•	•	•	•	•	•	•	•	•	06	1.6	2.1	2.6	3.0	3.7	4.2	4.7	5.2
•		•	•	•			•		•	•	•		•	065	1.8	2.3	2.8	3.3	4.0	4.6	5.1	5.6
•	•	•	•	•	•	•	•	•	•	•	•	•	•	07	1.9	2.5	3.0	3.5	4.3	4.9	5.5	6.1
•		•	•	•			•		•	•	•			075	2.1	2.7	3.2	3.8	4.6	5.3	5.9	6.5
•		•	•	•	•	•	•	•	•	•	•	•	•	08	2.2	2.8	3.5	4.0	4.9	5.7	6.3	6.9
•		•	•	•			•		•	•	•			085	2.3	3.0	3.7	4.3	5.2	6.0	6.7	7.4
•		•	•	•	•	•	•	•	•	•	•	•	•	09	2.5	3.2	3.9	4.5	5.5	6.4	7.1	7.8
		•	•				•			•				095	2.6	3.4	4.1	4.8	5.8	6.7	7.5	8.2
•		•	•	•	•	•	•		•	•	•	•	•	10	2.7	3.5	4.3	5.0	6.1	7.1	7.9	8.7
•			•				•		•	•	•			11	3.0	3.9	4.8	5.5	6.7	7.8	8.7	9.5
•		•	•											115	3.1	4.1	5.0	5.8	7.0	8.1	9.1	10.0
•				•			•	•	•	•	•	•	•	12	3.3	4.2	5.2	6.0	7.3	8.5	9.5	10.4
•							•		•	•	•			125	3.4	4.4	5.4	6.3	7.7	8.8	9.9	10.8

^{*0° =} Solid Stream.

WASHJET® NOZZLES

PERFORMANCE DATA: STANDARD ANGLE SPRAY

	Nozzle Type and Spray Angle									Flow Rate Capacity (gallons per minute)						١						
		1	/8 WE	G					1,	/4 WE	G			Capacity Size		ſ	TOW nate	Capacity	(yallolis p	iei iiiiiiute		
0°*	5°	15°	25°	40°	50°	65°	0°*	5°	15°	25°	40°	50°	65°	Size	300 psi	500 psi	750 psi	1000 psi	1500 psi	2000 psi	2500 psi	3000 psi
		•	•	•										03	.82	1.1	1.3	1.5	1.8	2.1	2.4	2.6
•		•	•	•	•	•	•		•	•	•		•	04	1.1	1.4	1.7	2.0	2.4	2.8	3.2	3.5
		•	•	•					•	•	•			045	1.2	1.6	1.9	2.3	2.8	3.2	3.6	3.9
•		•	•	•	•	•	•		•	•	•	•	•	05	1.4	1.8	2.2	2.5	3.1	3.5	4.0	4.3
•		•	•	•	•	•	•		•	•				055	1.5	1.9	2.4	2.8	3.4	3.9	4.3	4.8
•		•	•	•	•	•	•		•	•	•			06	1.6	2.1	2.6	3.0	3.7	4.2	4.7	5.2
				•					•					065	1.8	2.3	2.8	3.3	4.0	4.6	5.1	5.6
•		•	•	•	•	•	•		•	•	•		•	07	1.9	2.5	3.0	3.5	4.3	4.9	5.5	6.1
•		•	•	•	•	•	•		•	•	•			08	2.2	2.8	3.5	4.0	4.9	5.7	6.3	6.9
•		•	•	•										085	2.3	3.0	3.7	4.3	5.2	6.0	6.7	7.4
•		•	•	•	•	•	•		•	•	•			09	2.5	3.2	3.9	4.5	5.5	6.4	7.1	7.8
			•											095	2.6	3.4	4.1	4.8	5.8	6.7	7.5	8.2
•		•	•	•	•	•	•		•	•	•			10	2.7	3.5	4.3	5.0	6.1	7.1	7.9	8.7
							•							15	4.1	5.3	6.5	7.5	9.2	10.6	11.9	13.0
		•												16	4.4	5.7	6.9	8.0	9.8	11.3	12.6	13.9
•														20	5.5	7.1	8.7	10.0	12.2	14.1	15.8	17.3
							•							30	8.2	10.6	13.0	15.0	18.4	21	24	26

^{*0° =} Solid Stream.

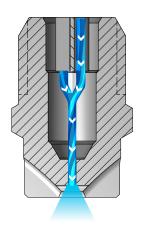
PERFORMANCE DATA: STANDARD ANGLE SPRAY

Inlet Conn.	Nozzle Type				Spray at 40	Angle O psi				Capacity			Flo	ow Rate (Capacity	(gallons	per minu	te)		
(in.)	IMEG®	5°	10°	15°	25°	40°	50°	65°	80°	Size	300 psi	500 psi	750 psi	1000 psi	1500 psi	2000 psi	2500 psi	3000 psi	3500 psi	4000 psi
	•			•	•					02	.55	.71	.87	1.0	1.2	1.4	1.6	1.7	1.9	2.0
	•	•	•	•	•	•	•	•	•	03	.82	1.1	1.3	1.5	1.8	2.1	2.4	2.6	2.8	3.0
	•	•	•	•	•	•	•	•	•	035	.96	1.2	1.5	1.8	2.1	2.5	2.8	3.0	3.3	3.5
	•	•	•	•	•	•	•	•	•	04	1.1	1.4	1.7	2.0	2.4	2.8	3.2	3.5	3.7	4.0
	•	•	•	•	•	•	•	•	•	045	1.2	1.6	1.9	2.3	2.8	3.2	3.6	3.9	4.2	4.5
1/0 1/4	•	•	•	•	•	•	•	•	•	05	1.4	1.8	2.2	2.5	3.1	3.5	4.0	4.3	4.7	5.0
1/8, 1/4	•	•	•	•	•	•	•	•	•	055	1.5	1.9	2.4	2.8	3.4	3.9	4.3	4.8	5.1	5.5
	•	•	•	•	•	•	•	•	•	06	1.6	2.1	2.6	3.0	3.7	4.2	4.7	5.2	5.6	6.0
	•	•	•	•	•	•	•	•	•	065	1.8	2.3	2.8	3.3	4.0	4.6	5.1	5.6	6.1	6.5
	•	•	•	•	•	•	•	•	•	07	1.9	2.5	3.0	3.5	4.3	4.9	5.5	6.1	6.5	7.0
	•	•	•	•	•	•	•	•	•	075	2.1	2.7	3.2	3.8	4.6	5.3	5.9	6.5	7.0	7.5
	•	•	•	•	•	•	•	•	•	08	2.2	2.8	3.5	4.0	4.9	5.7	6.3	6.9	7.5	8.0

DIMENSIONS AND WEIGHTS

Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	Hex. (in.)	Flats (in.)	Net Weight (oz.)
	MEG (M)	1/8	1.000	9/16	0.313	0.6
		1/4	1.000	9/16	0.406	0.8
	WEG (F)	1/8	1.125	1/2	0.313	0.9
		1/4	1.125	5/8	0.313	0.7

Based on largest/heaviest version of each type.


Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	Hex. (in.)	Flats (in.)	Net Weight (oz.)
	IMEG (M)	1/8	0.875	1/2	0.313	0.6
		1/4	0.906	9/16	0.406	0.8

Based on largest/heaviest version of each type.

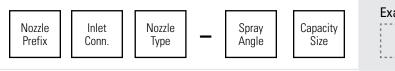
WASHJET® NOZZLES

OVERVIEW: CERAMAX WASHJET NOZZLES

- High pressure, even spray pattern at pressures above 300 psi (20 bar)
- Ceramic orifice insert made of aluminum oxide material provides longer wear life and greater corrosion resistance than hardened stainless steel
- Stainless steel nozzle body for better corrosion resistance than hardened stainless steel
- 1/4" NPT inlet connection
- Maximum working pressure: 4000 psi (276 bar)
- · Spray impact is comparable to standard MEG nozzles

CERAMAX WashJet Nozzles

As the liquid exits through the rounded U shape of the orifice, it forms into a flat spray pattern. The distribution is even at pressures above 300 psi (20 bar).


CERMEG 1/4" male conn.

IDEAL FOR:

 Grill, rocker panel and wheel well cleaning

ORDERING INFORMATION

CERAMAX WASHJET CERMEG WITH GUIDE VANE


BSPT connections require the addition of a "B" prior to the inlet connection.

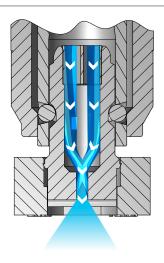
CERAMAX WASHJET CERMEG WITHOUT GUIDE VANE

BSPT connections require the addition of a "B" prior to the inlet connection.

CERAMAX WEAR DATA

	PERFORMANCE DATA: STANDARD ANGLE SPRAY												
Inlet conn.	Nozzle Type	SI	Spray Angle		Capacity Size	Flow Rate Capacity (gallons per minute)							
(in.)	CERMEG	15°	25°	40°	Size	300 psi	500 psi	750 psi	1000 psi	1500 psi	2000 psi	2500 psi	3000 psi
	•	•	•	•	02	.55	.71	.87	1.0	1.2	1.4	1.6	1.7
	•	•	•	•	025	.68	.88	1.1	1.3	1.5	1.8	2.0	2.2
1/4	•	•	•	•	03	.82	1.1	1.3	1.5	1.8	2.1	2.4	2.6
1/4	•	•	•	•	04	1.1	1.4	1.7	2.0	2.4	2.8	3.2	3.5
	•	•	•	•	05	1.4	1.8	2.2	2.5	3.1	3.5	4.0	4.3
	•	•	•	•	06	1.6	2.1	2.6	3.0	3.7	4.2	4.7	5.2

DIMENSIONS AND WEIGHTS


Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	Hex.	Net Weight (oz.)
\$.\$.0.1 L	CERMEG (M)	1/4	1.000	9/16 in. (14 mm)	0.8

Based on largest/heaviest version of each type.

QUICK-CONNECT WASHJET® NOZZLES

OVERVIEW: QUICK-CONNECT WASHJET NOZZLES

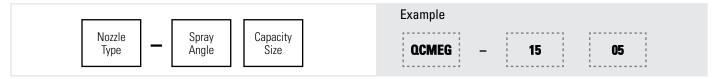
- High-impact flat-fan, spray pattern with uniform distribution
- Spray angles range from 0° to a 40° flat spray
- QCIMEG offers optimized fluid dynamics to minimize turbulence and maximize spray performance
- Incorporates the convenience of a quick connect/disconnect design
- Protective nozzle guards are color-coded for easy identification of spray angles
- Locating ribs on nozzle guards provide fast alignment and easy spray pattern direction
- Long wear life hardened stainless steel
- An optional 302 stainless steel guide vane stabilizes turbulent flow and improves pattern quality and cleaning efficiency
- QCEM Soap nozzle available in brass

Quick-Connect WashJet Nozzles

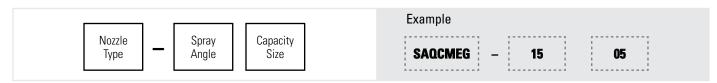
As the liquid exits through the rounded U shape of the orifice, it forms into a flat spray pattern. The distribution is even at pressures above 300 psi (20 bar).

QUICK-CONNECT WASHJET NOZZLE OPTIONS

IDEAL FOR:


Grill, rocker panel and wheel well cleaning

QUICK-CONNECT WASHJET® NOZZLES


HIGH PRESSURE FLAT SPRAY

ORDERING INFORMATION

QUICK-CONNECT WASHJET QCMEG AND QCIMEG WITH GUIDE VANE

QUICK-CONNECT WASHJET QCMEG AND QCIMEG WITHOUT GUIDE VANE

PERFORMANCE DATA: STANDARD ANGLE SPRAY Spray Angle Flow Rate Capacity (gallons per minute) **Nozzle Type** at 40 psi Capacity 0°* Size 15° 1000 1500 2000 3000 25° ۸n۰ 300 500 750 2500 3500 4000 QCMEG (Red) (Yellow) (Green) (White) psi • .55 .71 1.0 1.2 1.4 1.6 2.0 .87 1.7 1.9 • 03 .82 1.1 1.5 1.8 2.4 2.8 3.0 • • • • 035 .96 1.2 1.5 1.8 2.1 2.5 2.8 3.0 3.3 3.5 • • 04 1.1 1.4 1.7 2.0 2.4 2.8 3.2 3.5 3.7 4.0 045 23 2.8 3.2 3.6 • • • 1.2 16 1.9 3.9 4.2 4.5 • 05 14 18 22 25 31 35 4 0 4.3 47 5.0 • 055 15 19 24 28 34 39 43 48 5.1 5.5 • • 06 1.6 2.1 26 3.0 3.7 4.2 4.7 5.2 56 6.0 • • 065 1.8 2.3 2.8 3.3 4.0 4.6 5.1 5.6 6.1 6.5 1.9 4.9 07 2.5 3.0 3.5 4.3 5.5 6.1 6.5 7.0 075 3.2 3.8 4.6 5.9 6.5 7.5 • • • • 80 2.2 2.8 3.5 4.0 4.9 5.7 6.3 6.9 7.5 8.0 • • 09 2.5 3.2 3.9 4.5 5.5 6.4 7.1 7.8 8.4 9.0 • 10 2.7 3.5 4.3 5.0 6.1 7.1 7.9 8.7 9.4 10.0 3.3 6.0 7.3 95 12.0 12 4.2 5.2 85 10.4 11 2 6.5 92 10.6 119 13.0 • 15 41 5.3 7.5 14.0 15.0

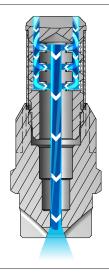
^{*0° =} Solid Stream.

QUICK-CONNECT WASHJET® NOZZLES

PERFOR STANDA															
Nozzle Type			Angle O psi		Capacity	Flow Rate Capacity (gallons per minute)									
QCIMEG	10° (Orange)	15° (Yellow)	25° (Green)	40° (White)	Size	300 psi	500 psi	750 psi	1000 psi	1500 psi	2000 psi	2500 psi	3000 psi	3500 psi	4000 psi
•			•	•	02	.55	.71	.87	1.0	1.2	1.4	1.6	1.7	1.9	2.0
•	•	•	•	•	03	.82	1.1	1.3	1.5	1.8	2.1	2.4	2.6	2.8	3.0
•	•	•	•	•	035	.96	1.2	1.5	1.8	2.1	2.5	2.8	3.0	3.3	3.5
•	•	•	•	•	04	1.1	1.4	1.7	2.0	2.4	2.8	3.2	3.5	3.7	4.0
•	•	•	•	•	045	1.2	1.6	1.9	2.3	2.8	3.2	3.6	3.9	4.2	4.5
•	•	•	•	•	05	1.4	1.8	2.2	2.5	3.1	3.5	4.0	4.3	4.7	5.0
•	•	•	•	•	055	1.5	1.9	2.4	2.8	3.4	3.9	4.3	4.8	5.1	5.5
•	•	•	•	•	06	1.6	2.1	2.6	3.0	3.7	4.2	4.7	5.2	5.6	6.0
•	•	•	•	•	065	1.8	2.3	2.8	3.3	4.0	4.6	5.1	5.6	6.1	6.5
•	•	•	•	•	07	1.9	2.5	3.0	3.5	4.3	4.9	5.5	6.1	6.5	7.0
•	•	•	•	•	075	2.1	2.7	3.2	3.8	4.6	5.3	5.9	6.5	7.0	7.5
•	•	•	•	•	08	2.2	2.8	3.5	4.0	4.9	5.7	6.3	6.9	7.5	8.0
•		•	•	•	09	2.5	3.2	3.9	4.5	5.5	6.4	7.1	7.8	8.4	9.0

	PERFORMANCE DATA: STANDARD ANGLE SPRAY											
Nozzle Type		Spray Angle at 40 psi	•	Capacity	Flow Rate Capacity (gallons per minute)							
ОСЕМ	25°	50°	65°	Size	300 psi	500 psi	800 psi	1000 psi	1500 psi	2000 psi	2500 psi	3000 psi
•	•		•	40	11.0	14.1	17.9	20	24	28	32	35
•		•		50	13.7	17.7	22	25	31	35	40	43

DIMENSIONS AND WEIGHTS


Nozzle	Nozzle Type	Length (in.)	Dia. (in.)	Net Weight (oz.)
	QCMEG QCIMEG	1.219	0.969	0.8

Based on largest/heaviest version of each type.

OVERVIEW: VEEJET SPRAY NOZZLES

- Flat spray pattern distributes the liquid as a flat- or sheet-type spray
- Uniform distribution over a wide range of flow rates and pressures
- Spray angles available from 0° (solid stream) to 110° at 40 psi (3 bar)
- Specially tapered spray pattern is ideal for use in manifold and header applications
- · Unobstructed flow passages minimize clogging
- Use 12686 stainer with H-1/8VV VeeJet nozzles and 12687 strainer for H-1/4VV VeeJet nozzles
- Maximum pressure is 500 psi (35 bar)

VeeJet Nozzles

As the liquid exits through the sharp V shape cut of the orifice, it forms into a flat spray pattern. The distribution is tapered from the center of the spray.

VEEJET NOZZLE OPTIONS

1/8" to 1/4" female conn. Flow rates below 1 gpm at 40 psi (3.8 lpm at 2.8 bar)

1/8" to 1/4" female conn. Flow rates of 1 gpm and greater at 40 psi (3.8 lpm and greater at 2.8 bar)

IDEAL FOR:

 Chemical arches or anywhere spray nozzles are aligned to produce a uniform distribution

H-U

1/8" to 3/4" male conn. Flow rates of 1 gpm and greater at 40 psi (3.8 lpm and greater at 2.8 bar)

H-VV

1/8" to 1/4" male conn. Flow rates below 1 gpm at 40 psi (3.8 lpm at 2.8 bar) H-VVL includes integral strainer

H-VVL

1/8" to 1/4" male conn. Flow rates below 1 gpm at 40 psi (3.8 lpm at 2.8 bar) H-VVL includes integral strainer

MATERIAL OPTIONS

Material	Code
Brass	(none)
303 Stainless Steel	SS

Other materials available upon request.

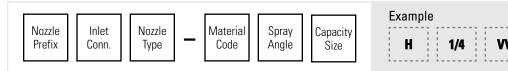
MESH GUIDE

Orifice Dia. (in.)	Recommended Screen Mesh
Up through .018	200
.019 through .031	100
.032 and larger	50

SS

110

10

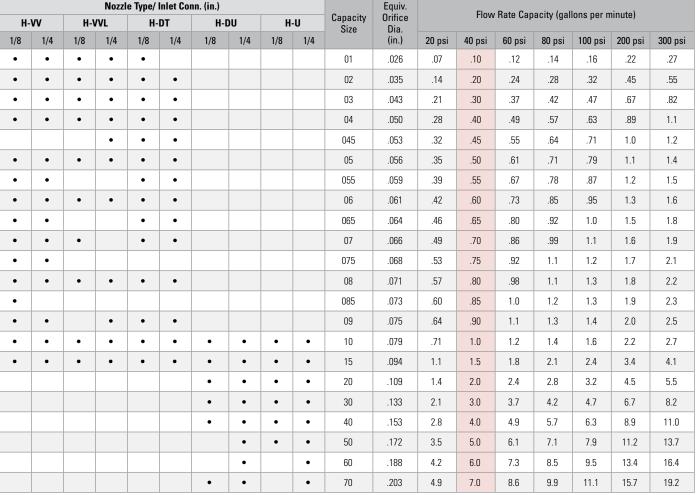


FLAT SPRAY

VEEJET® NOZZLES

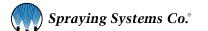

ORDERING INFORMATION

VEEJET H-DT, H-DU, H-U, H-VV H-VVL



BSPT connections require the addition of a "B" prior to the inlet connection.

VEEJET STRAINER



PERFORMANCE DATA: STANDARD ANGLE SPRAY

Most capacities may be available in the following spray angles: 0°, 15°, 25°, 40°, 50°, 65°, 80°, 95° and 110°

 $\label{lighted} \mbox{Highlighted column shows the rated pressure.}$

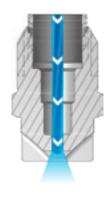
VEEJET® NOZZLES

FLAT SPRAY

DIMENSIONS AND WEIGHTS

Nozzle	Nozzle Type	Inlet Conn. (in.)	Length (in.)	Hex. (in.)	Net Weight (oz.)
	H-DT	1/8	0.750	1/2	0.5
	(F)	1/4	0.780	5/8	0.8
	H-DU (F)	1/8	1.125	1/2	0.8
		1/4	1.250	5/8	1.3
	H-U	1/8	1.000	9/16	0.5
	(M)	1/4	1.000	9/16	0.8

Based on largest/heaviest	version of each type.
---------------------------	-----------------------


Nozzle	Nozzle Type	Inlet Conn. (in.)	Length (in.)	Hex. (in.)	Net Weight (oz.)
	H-VV	1/8	0.875	1/2	0.5
	(M)	1/4	0.906	9/16	0.8
	H-VVL	1/8	1.531	1/2	0.8
	H-VVL (M)	1/4	1.250	9/16	1

Based on largest/heaviest version of each type.

VEEJET® NOZZLES

OVERVIEW: KYNAR® H1/4U VEEJET NOZZLES

- · Color-coded for ease of spray angle identification
- Available in five angles: 25°, 40°, 50°, 65° and 80°
- Constructed of PVDF for excellent chemical resistance
- Nozzle body is standard 11/16" hex size and has a flange for easy installation and removal using a socket wrench
- Flats on the VeeJet nozzle facilitate proper alignment of spray pattern
- · Optional removable strainer
- Use 12687 strainer for H1/4VV VeeJet nozzles

Kynar VeeJet Nozzles

As the liquid exits through the sharp V shape cut of the orifice, it forms into a flat spray pattern. The distribution is tapered from the center of the spray.

KYNAR H1/4U VEEJET NOZZLE OPTIONS

IDEAL FOR:

 Chemical arches or anywhere spray nozzles are aligned to produce a uniform distribution

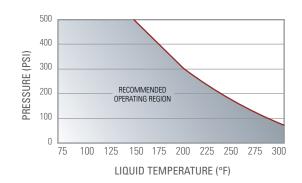
MESH GUIDE

Nozzle Size (in.)	Recommended Screen Mesh
.02 and larger	50

 $Material\ Code\ (no\ material\ code = Brass; SS = 303\ Stainless\ Steel)$

ORDERING INFORMATION

KYNAR® H1/4U VEEJET



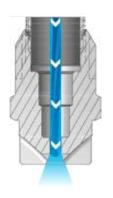
BSPT connections require the addition of a "B" prior to the inlet connection.

	PERFORMANCE DATA: STANDARD ANGLE SPRAY										4							
	Nozzle Type		Spray	Angle at	40 psi						Flow R	late Capa	city (gall	ons per r	ninute)			
Inlet Conn. (in.)	H-U	25° Green	40° White	50° Blue	65° Purple	80° Light Green	Capacity Size	5 psi	10 psi	20 psi	30 psi	40 psi	60 psi	80 psi	100 psi	200 psi	300 psi	500 psi
	•			•			10	.35	.50	.71	.87	1.0	1.2	1.4	1.6	2.2	2.7	3.5
	•	•	•	•	•	•	15	.53	.75	1.1	1.3	1.5	1.8	2.1	2.4	3.4	4.1	5.3
	•	•	•	•	•	•	20	.71	1.0	1.4	1.7	2.0	2.4	2.8	3.2	4.5	5.5	7.1
1/4	•			•	•	•	25	.9	1.2	1.7	2.1	2.5	3.0	3.5	3.9	5.6	6.8	8.8
	•	•	•	•	•	•	30	1.1	1.5	2.1	2.5	3.0	3.6	4.2	4.7	6.7	8.2	10.6
	•		•	•	•	•	40	1.4	2.0	2.8	3.4	4.0	4.8	5.7	6.3	8.9	11.0	14.1
	•		•	•	•	•	50	1.8	2.5	3.5	4.2	5.0	6.0	7.1	7.9	11.2	13.7	17.7

 $\label{lighted} \mbox{Highlighted column shows the rated pressure.}$

MAXIMUM PRESSURES AT VARIOUS TEMPERATURES

DIMENSIONS AND WEIGHTS


Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	D (Dia.) (in.)	Net Weight (oz.)
	H-U (M)	1/4	1	0.875	0.19

Based on largest/heaviest version of each type.

VEEJET® NOZZLES

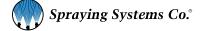
OVERVIEW: KYNAR® H1/4VV VEEJET NOZZLES

- · Color-coded for ease of spray angle identification
- Available in eight angles: 25°, 40°, 50°, 65°, 80°, 95°, 110° and 120°
- · Constructed of PVDF for excellent chemical resistance
- Nozzle body is standard 7/16" hex size and has a flange for easy installation and removal using a socket wrench
- Flats on the VeeJet nozzle facilitate proper alignment of spray pattern
- · Optional removable strainer
- Use 12687 strainer for H1/4VV VeeJet nozzles

Kynar VeeJet Nozzles

As the liquid exits through the sharp V shape cut of the orifice, it forms into a flat spray pattern. The distribution is tapered from the center of the spray.

KYNAR H1/4VV VEEJET NOZZLE OPTIONS


IDEAL FOR:

 Chemical arches or anywhere spray nozzles are aligned to produce a uniform distribution

MESH GUIDE

Nozzle Size (in.)	Recommended Screen Mesh					
.01 through .02	100					
.02 and larger	50					

Material Code (no material code = Brass;SS = 303 Stainless Steel)

ORDERING INFORMATION

KYNAR® H1/4VV VEEJET



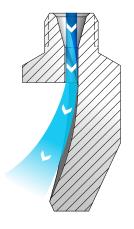
BSPT connections require the addition of a "B" prior to the inlet connection.

	RFORI NDA				RAY														4		
	Nozzle Type			S	pray Ang	le at 40 p	si						Flo	w Rate	e Capac	ity (ga	llons pe	er minu	te)		
Inlet Conn. (in.)	H-VV	25° Green	40° White	50° Blue	65° Purple	80° Light Green	95° Gray	110° Light Blue	120° Light Purple	Capacity Size	5 psi	10 psi	20 psi	30 psi	40 psi	60 psi	80 psi	100 psi	200 psi	300 psi	500 psi
	•	•	•		•	•				01	.04	.05	.07	.09	.10	.12	.14	.16	.22	.27	.35
	•		•	•	•	•	•	•	•	02	.07	.10	.14	.17	.20	.24	.28	.32	.45	.55	.71
	•				•					025	.09	.13	.18	.22	.25	.31	.35	.40	.56	.68	.88
	•	•	•	•	•	•	•	•	•	03	.11	.15	.21	.26	.30	.37	.42	.47	.67	.82	1.1
1/4	•		•	•	•	•	•	•	•	04	.14	.20	.28	.35	.40	.49	.57	.63	.89	1.1	1.4
1/4	•		•	•	•	•	•	•	•	05	.18	.25	.35	.43	.50	.61	.71	.79	1.1	1.4	1.8
	•	•	•	•	•	•	•	•	•	06	.21	.30	.42	.52	.60	.73	.85	.95	1.3	1.6	2.1
	•	•	•		•	•				07	.25	.35	.49	.61	.70	.86	.99	1.1	1.6	1.9	2.5
	•	•	•	•	•	•	•	•	•	08	.28	.40	.57	.69	.80	.98	1.1	1.3	1.8	2.2	2.8
	•	•	•		•	•				10	.35	.50	.71	.87	1.0	1.2	1.4	1.6	2.2	2.7	3.5

Highlighted column shows the rated pressure.

MAXIMUM PRESSURES AT VARIOUS TEMPERATURES

DIMENSIONS AND WEIGHTS


Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	D (Dia.) (in.)	Net Weight (oz.)
	H-VV (M)	1/4	0.875	0.625	0.1

Based on largest/heaviest version of each type.

FLATJET® NOZZLES

OVERVIEW: FLATJET SPRAY NOZZLES

- High-impact, flat spray pattern with narrow spray angle, sharply defined edges and uniform spray distribution
- · Solid, one-piece design with deflector plane
- Large, unobstructed flow passage minimizes clogging
- Spray angles from 15° to 50°

FlatJet Nozzles

As liquid passes through the nozzle, it hits the deflector surface and spreads out to form a flat spray pattern. The distribution is even from the center of the spray. The combination of medium to large flow rates and narrow spray angles produces a high-impact spray.

1/4" to 1/2" male conn.

IDEAL FOR:

- Rinse arches
- Presoak
- Use with recycled water
- Applications where adjacent spray patterns do not overlap

MATERIAL OPTIONS

Material	Code
Brass	(none)
Mild Steel	I
303 Stainless Steel	SS
316 Stainless Steel	316SS

Other materials available upon request.

ORDERING INFORMATION

FLATJET P

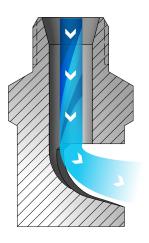
BSPT connections require the addition of a "B" prior to the inlet connection.

FLATJET® NOZZLES

FLAT SPRAY

PERFORMANCE DATA: NARROW ANGLE SPRAY Nozzle Inlet Conn. Flow Rate Capacity (gallons per minute) Spray Angle (°) **Dimensions** Spray Equiv. Type (in.) Angle (°) Capacity Orifice В Net Size Dia. at 15 20 40 80 100 150 15 40 100 P 1/4 3/8 1/2 Length Deflection Bar Size Weight 40 psi (in.) psi psi psi psi psi psi psi psi psi (in.) Angle (°) (in. sq.) (oz.) • • 05 052 31 35 .50 71 79 .97 33 50 60 1-7/32 60 5/8 1 • 10 .074 .61 .71 1.0 1.4 1.6 1.9 34 50 60 1-7/32 60 5/8 1 50 • • 25 .117 1.5 1.8 2.5 3.5 4.0 4.8 42 50 59 1-5/8 42 3/4 3 • • 40 .148 2.4 2.8 4.0 5.7 6.3 7.7 39 50 60 1-27/32 45 3/4 3 3.7 4.2 6.0 11.6 42 50 2-5/32 37 5 • • 40 .148 2.4 2.8 4.0 5.7 6.3 7.7 31 40 50 2-3/8 35 7/8 5 40 50 7 • • .165 3.1 3.5 5.0 7.1 7.9 9.7 31 40 49 2-1/2 33 1 • 60 3.7 42 6.0 85 9.5 11.6 32 40 2-27/32 33 8 • 181 49 1 2 10 .71 1.9 1-7/16 5/8 .074 .61 1.0 1.6 18 35 39 36 • 14 • 20 105 12 14 2 0 28 3.2 3.9 24 35 40 1-21/32 30 3/4 2 • 3 • 25 .117 15 1.8 2.5 3.5 4.0 4.8 24 35 39 1-15/16 28 3/4 35 3 • • 30 .128 1.8 2.1 3.0 4.2 4.7 5.8 26 35 41 2-1/16 28 3/4 • 40 2.8 4.0 6.3 7.7 28 35 38 2-9/32 26 7/8 4 .148 2.4 5.7 • .165 3.1 3.5 5.0 7.1 7.9 9.7 31 35 38 2-1/2 7/8 5 • • 60 .181 3.7 4.2 6.0 8.5 9.5 11.6 29 35 39 2-7/8 27 1 8 25 • 40 .148 2.4 2.8 4.0 5.7 6.3 7.7 15 25 34 2-9/16 25 3/4 4 2 10 .71 1.9 15 23 22 • • .074 1.0 1.4 1.6 _ 1-7/8 5/8 2 20 • • .105 1.4 2.0 28 3.2 3.9 15 19 2-1/8 19 5/8 18 2.1 4.7 5.8 6 2-27/32 4 • 30 .128 3.0 42 15 24 25 3/4 • 15 40 148 28 4 0 5.7 77 8 15 21 3-5/8 18 7/8 8 • 24 6.3 • 50 .165 3.1 3.5 5.0 7.1 7.9 9.7 9 15 20 3-9/16 15 7/8 6 • 60 .181 3.7 4.2 8.5 9.5 15 19 12 6.0 11.6 10 4-15/16

Highlighted column shows the rated pressure.



FLAT SPRAY

FLOODJET® NOZZLES

OVERVIEW: FLOODJET SPRAY NOZZLES

- Wide-angle, flat-fan spray pattern with uniform distribution and medium impact
- Precision engineered for dependable, accurate control of deflection and spray angle
- Orifice is protected from damage and is designed to minimize clogging

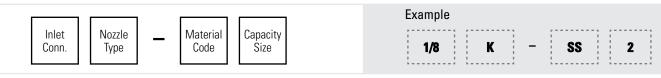
FloodJet Nozzles

As liquid passes through the nozzle, it hits the deflector surface and spreads out to form a flat spray pattern. The distribution is even from the center of the spray. The deflector surface enables the formation of wide spray angles compared to other flat spray nozzles.

1/8" to 1/2" (M)

IDEAL FOR:

- Presoak applications
- Final rinse applications
- Foam arches


MATERIAL OPTIONS

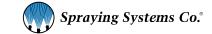
Material	Code
Brass	(none)
303 Stainless Steel	SS
316 Stainless Steel	316SS
Polyvinyl Chloride	PVC

Other materials available upon request.

ORDERING INFORMATION

FLOODJET K

BSPT connections require the addition of a "B" prior to the inlet connection.


Nozzle Type		Inlet Co	nn. (in.)		Capacity	Equiv. Orifice		Flow	Rate Capa	acity (gallo	ons per mi	inute)		Sp	ray Angle	(°)
K	1/8	1/4	3/8	1/2	Size	Dia. (in.)	3 psi	7 psi	10 psi	20 psi	30 psi	40 psi	60 psi	7 psi	20 psi	60 psi
•	•	•			2	.047	_	.17	.20	.28	.35	.40	.49	83	113	129
•	•	•			2.5	.052	-	.21	.25	.35	.43	.50	.61	98	122	133
•	•	•			3	.057	-	.25	.30	.42	.52	.60	.73	86	112	126
•	•				4	.066	-	.33	.40	.57	.69	.80	.98	97	123	132
•	•	•			5	.074	.27	.42	.50	.71	.87	1.0	1.2	114	128	142
•	•	•			7.5	.091	.41	.63	.75	1.1	1.3	1.5	1.8	101	119	134
•	•	•			10	.105	.55	.84	1.0	1.4	1.7	2.0	2.4	115	133	145
•	•	•			12	.115	.66	1.0	1.2	1.7	2.1	2.4	2.9	128	139	150
•	•	•			15	.128	.82	1.3	1.5	2.1	2.6	3.0	3.7	98	113	123
•	•	•			18	.140	.99	1.5	1.8	2.5	3.1	3.6	4.4	106	120	13′
•	•	•			20	.148	1.1	1.7	2.0	2.8	3.5	4.0	4.9	110	122	133
•		•			22	.155	1.2	1.8	2.2	3.1	3.8	4.4	5.4	113	125	130
•		•			24	.162	1.3	2.0	2.4	3.4	4.2	4.8	5.9	115	131	14
•		•			27	.172	1.5	2.3	2.7	3.8	4.7	5.4	6.6	119	135	148
•			•		30	.181	1.6	2.5	3.0	4.2	5.2	6.0	7.3	100	110	12
•			•		35	.196	1.9	2.9	3.5	4.9	6.1	7.0	8.6	105	118	128
•			•	•	40	.209	2.2	3.3	4.0	5.7	6.9	8.0	9.8	111	126	130
•			•		45	.222	2.5	3.8	4.5	6.4	7.8	9.0	11.0	115	130	14
•				•	50	.234	2.7	4.2	5.0	7.1	8.7	10.0	12.2	117	131	140
•				•	60	.256	3.3	5.0	6.0	8.5	10.4	12.0	14.7	120	134	142
•				•	70	.277	3.8	5.9	7.0	9.9	12.1	14.0	17.1	123	137	146
•				•	80	.296	4.4	6.7	8.0	11.3	13.9	16.0	19.6	127	138	149

Highlighted column shows the rated pressure.

DIMENSIONS AND WEIGHTS

Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	Hex. (in.)	Net Weight (oz.)
		1/8	1.281	7/16	0.5
	К	1/4	1.343	9/16	1
	,	3/8	1.750	11/16	2
		1/2	2.000	7/8	4


Based on largest/heaviest version of each type.

UNIJET® NOZZLES

OVERVIEW: UNIJET SPRAY NOZZLES

- Flat fan spray pattern with uniform distribution
- Spray angles available in 0°, 15°, 25°, 40°, 65°, 80° and 110°
- Save on nozzle replacement costs bodies can be reused; only spray tips are replaced
- Design allows easy tip change-out in place remove tips by unscrewing the retainer cap
- · Recessed orifices to protect against damage
- T and TT bodies are compatible with FoamJet® spray tips (see page B27)

UniJet VeeJet® Nozzles

As the liquid exits through the sharp V shape cut of the orifice, it forms into a flat spray pattern. The distribution is tapered from the center of the spray.

UNIJET SPRAY NOZZLE OPTIONS

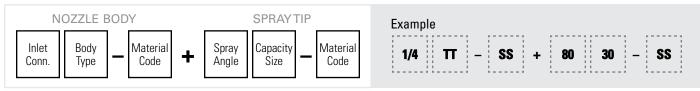
— Tip Retainer — TPU Spray Tip — Strainer — T Body

IDEAL FOR:

• Rinse applications

TT Body 1/8" to 1/2" male conn.

MATERIAL OPTIONS


Material	Material	Spray Tip	Bodies		
iviateriai	Code	TPU	Т	TT	
Brass	(none)	•	•	•	
303 Stainless Steel	SS	•	•	•	
Nylon	NYB		•	•	

Other materials available upon request.

TPU Spray Tip + T Body (TT) Use with screen strainer and tip retainer

ORDERING INFORMATION

UNIJET TPU

BSPT connections require the addition of a "B" prior to the nozzle body inlet connection.

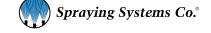
UniJet nozzle assemblies include a pre-sized wire mesh strainer based on orifice diameter. When ordering just a UniJet spray tip, the mesh is not included.

See page B27 for mesh selection guide.

PERFORMANCE DATA: STANDARD ANGLE SPRAY

JIAND	AIID AIG	ILL OI IIA											
Tip Type	Capacity	Equiv. Orifice		Flow Rate Capacity (gallons per minute)									
TPU	Size	Dia. (in.)	10 psi	20 psi	30 psi	40 psi	60 psi	80 psi	100 psi	200 psi			
•	01	.026	.05	.07	.09	.10	.12	.14	.16	.22			
•	015	.032	.08	.11	.13	.15	.18	.21	.24	.34			
•	02	.035	.10	.14	.17	.20	.24	.28	.32	.45			
•	03	.043	.15	.21	.26	.30	.37	.42	.47	.67			
•	04	.050	.20	.28	.35	.40	.49	.57	.63	.89			
•	045	.053	.23	.32	.39	.45	.55	.64	.71	1.0			
•	05	.056	.25	.35	.43	.50	.61	.71	.79	1.1			
•	06	.061	.30	.42	.52	.60	.73	.85	.95	1.3			
•	07	.066	.35	.49	.61	.70	.86	.99	1.1	1.6			
•	08	.071	.40	.57	.69	.80	.98	1.1	1.3	1.8			
•	09	.075	.45	.64	.78	.90	1.1	1.3	1.4	2.0			
•	10	.079	.50	.71	.87	1.0	1.2	1.4	1.6	2.2			
•	12	.087	.60	.85	1.0	1.2	1.5	1.7	1.9	2.7			

Performance data for 110° spray angle. Contact your sales engineer for performance data for other spray angles.


Other body types may be available. Contact representative for further information.

Highlighted column shows the rated pressure.

DIMENSIONS AND WEIGHTS

Nozzle	Nozzle Type	Inlet Conn. (in.)	L (in.)	Hex. (in.)	Net Weight (oz.)
	T (F) + TPU TT (M) + TPU	1/4	1.610	13/16	2.3

Based on the largest/heaviest version of each type.

FOAMING

OVERVIEW: FOAMJET® NOZZLES

- · Produce highly aerated, lasting foam
- · Made of chemical-resistant and durable material
- Plastic FoamJet nozzles have a color-coded insert for easy capacity identification
- FJP-VS and QJFJP produce a tapered-edge, flat spray pattern with even distribution – ideal for headers and manifolds where multiple nozzles are needed
- QJFJP offers easy installation and maintenance with quarter-turn automatic alignment
- QJFJP saves chemicals when used with blue color-coded check valve
- Body options are available in many quick-connect body assemblies for fast, easy maintenance

FOAMJET SPRAYTIP OPTIONS

FJ

- 0°, 40° or 80° spray angles
- Material: brass

FJP-PP

- 20°, 40°, 65° or 80° spray angles
- Material: durable, chemically-resistant polypropylene
- Color-coded insert for easy capacity identification

FJP-VS

- 40° or 80° spray angles
- Material: durable, chemically-resistant polypropylene
- With stainless steel orifice

QJFJP

- 40° or 80° spray angles
- Easy installation and maintenance with quarter-turn automatic alignment
- Color-coded insert for easy capacity identification

BODY OPTIONS

Fits 1/2", 3/4" or 1" pipe Outlet: QuickJet®

Max pressure: 150 psi (10.4 bar)

Nylon

1" pipe

Brass, 303 Stainless Steel

7421

Outlet: 11/16"-16 thread Max pressure: 150 psi (10.4 bar)

Tip retainer choices: CP1325 or CP1325-SS

1" pipe Outlet: 11/16"-16 thread

Max pressure: 150 psi (10.4 bar)

Nylon Tip retainer choices:

25775

CP18032-NYB or CP8027-NYB

8360-NY-BL

Inlet: 1/4" (M) NPT/BSPT Outlet: 11/16"- 16" thread Max pressure: 125 psi (9 bar)

Quick-connect diaphragm check valve nozzle body

Inlet: 1/4" (M) NPT/BSPT Outlet: 1/4" (F) NPT/BSPT Max pressure: 300 psi (20 bar)

Nylon

Т

Diaphragm check

valve nozzle body Inlet: 1/4" or 1/8" (F) NPT/BSPT Outlet: 11/16" - 16" thread Max pressure: 125 psi (9 bar)

Nylon

Quick-connect diaphragm check valve nozzle body

Inlet: 1/4" (F) NPT/BSPT Outlet: QuickJet

Max pressure: 300 psi (20 bar)

Nylon

Inlet: 1/4" (M) NPT/BSPT

Outlet: QuickJet Max pressure: 300 psi (20 bar)

Nvlon

Inlet: 1/4" (F) NPT/BSPT Outlet: 11/16" - 16 thread Max pressure: 300 psi (20 bar) Brass, 303 Stainless Steel, Nylon

Tip retainer choices determined by material: For nylon, use CP18032-

NYB or CP8027

Outlet: 11/16" - 16 thread Max pressure: 300 psi (20 bar) Brass, 303 Stainless Steel, Nylon

Tip retainer choices determined by material: For nylon, use CP18032-NYB or CP8027

QJ1/4T-NYB Quick-connect diaphragm check

valve nozzle body Inlet: 1/4" (M) NPT/BSPT

Outlet: QuickJet

Max pressure: 300 psi (20 bar)

QJ1/4TT-NYB

Quick-connect diaphragm check valve nozzle body

Inlet: 1/4" (F) NPT/BSPT

Outlet: QuickJet

Max pressure: 300 psi (20 bar)

valve nozzle body Fits 1/2", 3/4" or 1" pipe

Outlet: QuickJet®

Max pressure: 300 psi (20 bar)

Nylon

Quick-connect diaphragm side mounting valve nozzle body

Fits 1/2", 3/4" or 1" pipe

Outlet: QuickJet

Nylon

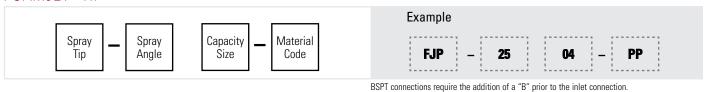
NYB

FOAMING

PERFORMANCE DATA: STANDARD ANGLE SPRAY

Nozzle Type and Spray Angle						Capacity		Flow Rate Capacity				
	FJ			FJF	P-PP		QJFJP an	d FJP-VS	Size		(gallons per minute)	
0°	40°	80°	20°	40°	65°	80°	40°	80°	Orifice	Color [†]	40 psi	60 psi
			•	•	•	•	•	•	015	Green	.15	.18
			•	•	•	•	•	•	02	Yellow	.20	.24
	•		•	•	•	•	•	•	03	Blue	.30	.37
		•	•	•	•	•	•	•	04	Red	.40	.49
		•	•	•	•	•	•	•	05	Brown	.50	.61
•		•	•	•	•	•	•	•	06	Gray	.60	.73
•		•	•	•	•	•	•	•	08	White	.80	.98
•		•	•	•	•	•			10	Lt. Blue	1.0	1.22
•									15		1.5	1.8
•									20		2.0	2.5
•									25		2.5	3.1
•									30		3.0	3.7

[†]Color Inserts for FJP, QJFJP and FJP-VS Series.


DIMENSIONS AND WEIGHTS

Nozzle	Nozzle Type	Length (in.)	Net Weight (oz.)
L —	FJ	1.75	1
	FJP-PP	1.5625	.25
	FJP-VS	1.469	.25
	QJFJP	2.063	.625

Based on largest/heaviest version of each type.

ORDERING INFORMATION

FOAMJET® TIP

FOAMJET BODY ASSEMBLY

RETAINERS

SPECIALTY SPRAY

TIP RETAINERS

CP1325

Holds nozzle assembly together Inlet: 11/16"-16 female thread Material: Brass, stainless steel For high pressure applications, use 7890 tip retainer

Order CP1325 when replacement

is needed

CP8027-NYB

Holds nozzle assembly together

Inlet: 11/16"-16 female thread Material: Nylon

CP18032A-NYB

Holds nozzle assembly together Winged cap allows quick change of spray tips with no tool required

Inlet: 11/16"-16 female thread Material: Nylon

MATERIAL OPTIONS

Material	Material Code
Brass	(none)
Stainless Steel	SS
Nylon	NYB

Other materials available upon request.

QUICK-CONNECT RETAINERS

114445-4-CELR

Holds nozzle assembly together
Use with FJ and FJP FoamJet® Nozzles
Constructed of acetal (Celcon) for
good strength and chemical resistance

Max Pressure: 300 psi (20 bar)

Standard gasket constructed of EPDM.

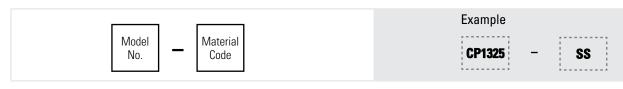
Viton® is optional

To order gasket separately use part number CP19438-VI or CP19438-EPR

114443-4-CELR

Holds nozzle assembly together
Use with FJP FoamJet Nozzles
Provides automatic alignment

Constructed of acetal (Celcon) for good strength and chemical resistance


Max Pressure: 300 psi (20 bar)

Standard gasket constructed of EPDM. Viton is optional

To order gasket separately use part number CP19438-VI or CP19438-EPR

ORDERING INFORMATION

RETAINERS

SPRAY

VALVES/STABILIZERS

21950-10-NY-BL CHECK VALVE

- Easy installation and removal
- · Corrosion-resistant

21950-10-NY-BL CHECK VALVE

Used with CP21953-EPR or VI diaphragm

Choice of opening pressures - 10 psi (0.7 bar), 15 psi (1 bar) or 20 psi (1.4 bar)

Max Pressure: 300 psi (20 bar)

Material: Nylon

JET STABILIZERS

- Install just before the spray nozzle to reduce fluid turbulence
- Helps reduce spray pattern flutter, increase fluid throw distance and increase impact force
- Ideal when nozzles are installed in 90° elbow forcing fluid to change direction
- For use with UniJet® flat spray and hollow cone nozzles

JET STRAINER OPTIONS

11370 Jet Stabilizer

1/8" x 1/8", 1/4" x 1/4", 3/8" x 3/8", 1/2" x 1/2", 3/4" x 3/4", 1" x 1", 1-1/4" x 1-1/4" male inlet conn./female outlet conn.

Materials: Brass, stainless steel

MATERIAL OPTIONS

Material	Material Code
Brass	(none)
Stainless Steel	SS

Other materials available upon request.

11950 Jet Stabilizer

Use with most standard UniJet® and Quick UniJet body assemblies Materials: Brass, stainless steel Stainless steel guide vane

ORDERING INFORMATION

CHECK VALVE

JET STABILIZERS

UNIJET® STRAINERS

- Use with most standard UniJet and Quick UniJet body assemblies
- In-line design for use at tip
- · Low pressure loss
- · Easy installation and removal
- · Corrosion-resistant versions
- Pair most styles with CP4743 nylon gasket to prevent leaks

Note: Standard UniJet and Quick UniJet nozzles include a strainer. Mesh size is based on orifice diameter. Order strainers separately only if ordering replacement spray tip or if a special version is needed.

6051 303 stainless steel

5053 brass

8079 polypropylene

Mesh: 24, 50, 100 and 200

STRAINER OPTIONS

4514

One-piece design

Slotted design accommodates larger particulates

Materials: Brass or nylon with 16, 25 or 50 mesh equivalents; aluminum with 16 or 25 mesh equivalents

4193A

Built-in check valve

Stainless steel springs: opening pressures of 5, 10, 20 or 40 psi (0.35, 0.7, 1.5 or 2.8 bar) Materials: Aluminum, brass, polypropylene,

303 stainless steel

Mesh: 24, 50, 100, and 200

7630

Disc design for use when space is extremely limited

Material: 303 stainless steel Mesh: 30, 50, 100 and 200

4067

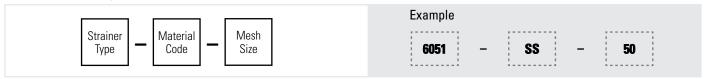
Cup design for use when space is limited

Material: 303 stainless steel Mesh: 30, 50, 100 and 200

MATERIAL OPTIONS

Material	Material Code
Brass	(none)
Aluminum	AL
Nylon	NY
Stainless Steel	SS
Polypropylene	PP

Other materials available upon request.


MESH GUIDE

Orifice Dia. (in.)	Recommended Screen Mesh
Up through .018	200
.019 through .031	100
.032 and larger	50

ALTY STRAINERS

ORDERING INFORMATION

STRAINER 5053, 6051 AND 8079

STRAINER 4193A

STRAINER 4514

STRAINER 4067 AND 7630

DIMENSIONS AND WEIGHTS

Strainer	Accessory Type	L (in.)	D (Dia.) (in.)	Net Weight (oz.)
	5053	0.72	0.594	1.76
D	6051	0.81	0.594	0.03
	8079	0.80	0.594	0.03
	4193A with check valve*	0.81	0.594	0.37

*Built-in check valve and stainless stell springs with	th opening pressures of 5, 10, 20, or 40 psi
--	--

Strainer	Accessory Type	L (in.)	D (Dia.) (in.)	Net Weight (oz.)
	4514	0.66	0.594	0.19
	4067	0.24	0.594	0.19
D	7630	0.06	0.594	0.02

GunJet® and TriggerJet® Spray Guns

C2

GunJet Spray Extensions

C8

GunJet Swivel Connectors and Adapters

C10

SPRAY GUNS

GUNJET® AND TRIGGERJET®

OVERVIEW: GUNJET AND TRIGGERJET SPRAY GUNS

- · Sturdy design and materials, including nylon handles and trigger guards, forged brass valve bodies, Buna-N or Viton® stem seals, PTFE valve seats and stainless steel working parts, mean long and productive equipment life
- Ergonomic design assures positive control and operator comfort even at maximum flow and pressure conditions
- Optional "weep" feature (AA70, PW4000 and 30A) helps prevent freezing in cold conditions

GUNJET SPRAY GUN OPTIONS

AA70

Max. operating pressure: 5000 psi (345 bar)

Max. temperature: 300°F (150°C)

Capacity: 10 gpm (38 lpm)

Material: Brass valve body with

nylon handle

Trigger lock and guard

Designed to withstand high impact

Ergonomic design with light trigger pull

Large grip area to accommodate work gloves

Vented handle remains comfortable during hot spraying operations

Optional weep feature prevents freezing

PW4000AS

Max. operating pressure: 4000 psi (275 bar)

Max. temperature: 300°F (150°C)

Capacity: 10 gpm (38 lpm)

Material: Brass valve body with

nylon handle

Trigger lock and guard

Designed to withstand high impact

Ergonomic design with light trigger pull

Bottom trigger pivot and inlet swivel rotate freely at high pressures

Handle remains comfortable during hot spraying operations

PW4000A

Max. operating pressure: 4000 psi (275 bar)

Max. temperature: 300°F (150°C)

Capacity: 10 gpm (38 lpm)

Material: Brass valve body with

nylon handle

Trigger lock and guard

Designed to withstand high impact

Ergonomic design with light

trigger pull

C2

Handle remains comfortable during hot spraying operations

AA60

Max. operating pressure: 2500 psi (175 bar)

Max. temperature: 300°F (150°C)

Capacity: 6 gpm (23 lpm)

Material: Brass or stainless steel valve body with nylon handle

Trigger lock and guard

Designed to withstand high impact

Ergonomic design with light trigger pull Front hose connection keeps grip cool

SPRAY GUNS

AA30A

Max. operating pressure: 1500 psi (105 bar)

Max. temperature: 200°F (93°C)

Capacity: 5 gpm (19 lpm)

Material: Brass valve body with

nylon handle

Trigger lock and guard

Designed to withstand high impact

Ergonomic design with light trigger pull

Front hose connection keeps

grip cool

Optional weep feature prevents freezing

AA30L-PP

Max. operating pressure: 150 psi (10 bar)

Max. temperature: 120°F (8.3°C)

Capacity: 5 gpm (19 lpm)

Material: Brass or polypropylene valve body with nylon handle

Trigger lock and guard

Light trigger pull

Front hose connection keeps grip cool

AA30L

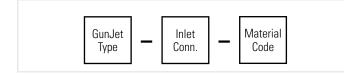
Max. operating pressure:

250 psi (17 bar)

Max. temperature: 200°F (93°C)

Capacity: 5 gpm (19 lpm)

Material: Brass valve body with



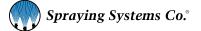
MATERIAL OPTIONS

Material	Material Code
Brass	(none)
Polypropylene	PP
303 Stainless Steel	SS

ORDERING INFORMATION

COMPLETE SPRAY GUN ASSEMBLY

BSPT connections require the addition of a "B".



SPECIFICATIONS

Model	Max. Operating Pressure (psi)	Capacity (gpm)	Max. Temperature (°F)	Inlet Conn. (in.)	Outlet Conn. (in.)	Weight (oz.)	Spray Tips	Extensions	Adapters/ Swivel Connectors	Spare Parts Kits
AA70	5000	10	300	3/8 NPT or BSPT (F)	1/4 NPT or BSPT (F)	25	IMEG, MEG QCIMEG, WashJet	20400-1/8F	15950	_
PW4000A	4000	10	300	1/4, 3/8 NPT or BSPT (F)	1/4, 3/8 NPT or BSPT (F)	24	IMEG, MEG, MEG-SSTC, QCMEG WashJet	15250, 20400- 1/4M*, 20400- 1/8F*	9765, 15950, 21550	AB-PW4000A-KIT, AB-PW4000AW-KIT
PW4000AS	4000	10	300	3/8 NPT or BSPT (F) swivel	1/4, 3/8 NPT or BSPT (F)	24	IMEG, MEG, MEG-SSTC, QCMEG WashJet	15250, 20400- 1/4M*, 20400- 1/8F*	15950	AB-PW4000AS-KIT, AB-PW4000ASW- KIT
AA60	2500	6	300	3/8 NPT or BSPT (F)	11/16–16 UniJet THD	16	EG UniJet, MEG, MEG-SSTC WashJet®	9004-SS, 9702A, 9702C, 9702S, 20400- 1/4M*, 20400- 1/8F*	14643-1/4, 15950-SS	AB60-KIT, AB60-SS-KIT, AB60W-KIT, AB60-20250-KIT AB60-21580-KIT, AB60-21580A-KIT, AB36533-60-KIT
AA30A	1500	5	200	1/4 NPT or BSPT (F)	11/16–16 UniJet® THD	15	EG, TG UniJet	9004-SS, 9702A, 9702C, 9702S, 13781S	4676-SS-1/4, 9765, 11990	AB30A-KIT AB30AW-KIT AB30A-50736-KIT
AA30L	250	5	200	1/4 NPT or BSPT (F)	11/16–16 UniJet® THD	15	TB, TG, TK, TN, TPU, TX UniJet	4673, 6671, 6960, 7715, 9004-SS, 9527, 9702A, 9702C, 9702S, 12086, 13781S, 14975	4676, 20897	AB30L-KIT AB30L-PP-KIT AB30L-VI-KIT
AA30L-PP	150	5	120	1/4 NPT or BSPT (F)	11/16–16 UniJet® THD	15	TB, TG, TK, TN, TPU, TX UniJet	4673, 6671, 6960, 7715, 9004-SS, 9527, 9702A, 9702C, 9702S, 12086, 13781S, 14975	4676, 20897	AB30L-KIT AB30L-PP-KIT AB30L-VI-KIT

^{*}Use with adapter 14643-1/4-SSP or 14643-1/4-IENP.

Do not exceed the maximum operating pressure of the lowest rated accessory item within the spray system. Contact your sales engineer for additional configuration options. See Spraying Systems Co. Hydraulic Spray Products Catalog 75 for spray tip performance data.

SPRAY GUNS

TRIGGERJET AND TRIGGER VALVE OPTIONS

AA36

Max. operating pressure: 150 psi (10 bar)

Max. temperature: 140°F (60°C)

Capacity: 7 gpm (27 lpm)

Material: Brass or

stainless steel valve body

Trigger lock

Internal strainer with choice of mesh sizes

Quick acting "on-off" valve

6104

Max. operating pressure:

250 psi (17 bar)

Max. temperature: 140°F (60°C)

Capacity: 2 gpm (7.6 lpm)

Material: Brass or stainless steel valve body

Trigger lock

Same as 4688 except with 1/4" NPT or BSPT (F) inlet and outlet connections

AA31

Max. operating pressure: 500 psi (35 bar)

Max. temperature: 200°F (93°C)

Capacity: 5 gpm (19 lpm)

Material: Brass valve body

Optional trigger lock

Can be used with air

Positive trigger action for drip-free shut off

6466

Max. operating pressure: 250 psi (17 bar)

Max. temperature: 140°F (60°C)

Capacity: 2 gpm (7.6 lpm)

Material: Brass or stainless

steel valve body

Internal strainer with choice of mesh sizes

Extra long trigger

4688

Max. operating pressure: 250 psi (17 bar)

Max. temperature: 140°F (60°C)

Capacity: 2 gpm (7.6 lpm)

Material: Brass or

stainless steel valve body

Trigger lock

Quick acting "on-off" valve

Trigger designed for ease and comfort in operation

connort in operation

6590

Max. operating pressure: 250 psi (17 bar)

Max. temperature: 140°F (60°C)

Capacity: 2 gpm (7.6 lpm)

Material: Brass or stainless

steel valve body

Trigger lock

Extra long trigger

SPRAY GUNS

GUNJET® AND TRIGGERJET®

22650-PP

Max. operating pressure: 150 psi (10 bar)

Max. temperature: 120°F (50°C) Capacity: 2 gpm (7.6 lpm)

Material: Polypropylene valve body

Trigger lock

Corrosion-resistant lightweight design

Choice of threaded or hose inlet connection UniJet® strainer option

22670-PP Max. operating pressure: 150 psi (10 bar) Max. temperature: 120°F (50°C) Capacity: 2 gpm (7.6 lpm) Available with 15" or 24" extensions Material: Polypropylene valve body Trigger lock Corrosion-resistant lightweight design Choice of threaded or hose inlet connection UniJet® strainer option

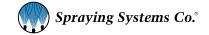
MATERIAL OPTIONS

Material	Material Code
Aluminum	AL
Brass	(none)
Polypropylene	PP
Stainless steel	SS

ORDERING INFORMATION

COMPLETE SPRAY GUN ASSEMBLY

BSPT connections require the addition of a "B" in the prefix of the part number. Example: B22650-PP-1/4.



SPRAY GUNS

SPECIFICATIONS

Model	Max. Operating Pressure (psi)	Capacity (gpm)	Max. Temperature (°F)	Inlet Conn. (in.)	Outlet Conn. (in.)	Weight (oz.)	Spray Tips	Extensions	Adapters/ Swivel Connectors	Spare Parts Kits
AA36	150	7	140	1/4, 3/8 NPT or BSPT (F)	1/4, 3/8 NPT or BSPT (F)	11	HH FullJet [®] , VeeJet [®]	20400-1/4M, 20400-1/8F	4272, 4725, 4754, 5820	AB36-KIT, AB36-SS-KIT, AB36-21140-KIT
AA31	500	5	200	1/4 NPS (M) or NPT or BSPT (F)	11/16–16 UniJet THD	12.5	EG, TB, TG, TK, TN, TP, TPU UniJet	6671-SS, 7715-SS, 9004-SS, 9527, 12086, 15699	4676, 7599, 8603, 8604, 11990, 14269, 14643	AB31-KIT, AB31-39430- KIT, AB31-9525-KIT, AB31-PGA-KIT
4688	250	2	140	1/4 NPT or BSPT (F)	11/16–16 UniJet THD	5	TB, TG, TK, TN, TP, TPU, TX UniJet	4673, 6671, 9004-SS, 9527, 9702A, 9702C, 9702S, 12086, 13781S, 14975, 15699	4676	AB4688-KIT
6104	250	2	140	1/4 NPT or BSPT (F)	1/4 NPT or BSPT (F)	5	FullJets, H-U, H-VV VeeJet	20400-1/4M, 20400-1/8F, CP12087	4676	AB6104-KIT
6466	250	2	140	1/4 NPT or BSPT (F)	11/16–16 UniJet THD	5	TB, TG, TK, TN, TP, TPU, TX UniJet	4673, 6671, 9004-SS, 9527, 9702A, 9702C, 9702S, 12086, 13781S, 14975, 15699	4676	AB6466-KIT
6590	250	2	140	1/4 NPT or BSPT (F)	1/4 NPT or BSPT (F)	6	FullJets, H-U, H-VV VeeJet	20400-1/4M, 20400-1/8F, CP12087	4676	AB6590-KIT
22650-PP	150	2	120	1/4, 3/8 hose or 1/4 NPT or BSPT (F)	11/16–16 UniJet THD	3	5500-PPB ConeJet	22665	22664, 22673	AB22650-PP- KIT
22670-PP	150	2	120	1/4, 3/8 hose or 1/4 NPT or BSPT (F)	11/16–16 UniJet THD		5500-PPB ConeJet	22665	22664, 22673	AB22650-PP- KIT
50800-PP-1/4	100	1.5	120	1/4, 3/8 hose or 1/4 NPT or BSPT (F)	11/16–16 UniJet THD	5	38720-PPB ConeJet®	_	AB50800 1/4"	_
50800-15-PP-1/4	100	1.5	120	1/4 NPT or BSPT Adapter	11/16–16 UniJet THD		38720-PPB ConeJet®	_	AB50800 1/4"	_

Do not exceed the maximum operating pressure of the lowest rated accessory item within the spray system. Contact your sales engineer for additional configuration options. See Spraying Systems Co. Hydraulic Spray Products Catalog 75A for spray tip performance data.

GUNJET® SPRAY EXTENSIONS

SPRAY GUN EXTENSIONS

Extension	Extension No.	Max. Pressure (psi)	Inlet Conn. (in.)	Outlet Conn. (in.)	Material	Lengths (in.)	Special Features					
						8						
*						12						
40-49	9004-SS	4000	11/16–16 UniJet THD	11/16–16 UniJet THD	Stainless steel	18						
						24						
						36						
	20400-1/4M	3000	1/4 NPT or	1/4 NPT or	Stainless steel or	18	Neoprene					
	20100 1, 1111	3000	BSPT (M)	BSPT (M)	zinc-plated steel	36	insulated cover					
	20400-1/8F	3000	1/4 NPT or	1/8 NPT or	Stainless steel or zinc-plated	18	Neoprene					
	20400-1/01	3000	BSPT (M)	BSPT (F)	steel	36	insulated cover					
						8						
_						18	Rubber insulated					
	15699	1000	1000 11/16–16 UniJet THD	11/16–16 UniJet THD	Brass	24	(8" inch length not rubber insulated)					
						36						
						48						
	9527	1000	1000 11/16–16 UniJet THD	11/16–16 UniJet THD	Brass	8	Curved, rubber insulated					
						18						
						24						
						36						
												48
	12086			11/16—16 UniJet THD	Aluminum with brass ferrules	8						
The same of the sa		1000	11/16–16 UniJet THD			18						
						24						
						36						
						8						
						12	_					
			11/16–16	11/16–16		18						
		500	UniJet THD	UniJet THD	Stainless steel	24	_					
						30						
						36						
	7715					48						
						8						
						12	_					
		050	11/16–16	11/16–16		18	_					
		250	UniJet THD	UniJet THD	Brass	24	_					
					_	30	_					
						36	_					
						48						

GUNJET® SPRAY EXTENSIONS

SPRAY GUNS

Extension	Extension No.	Max. Pressure (psi)	Inlet Conn. (in.)	Outlet Conn. (in.)	Material	Lengths (in.)	Special Features
	22665	150	11/16–16 UniJet THD	11/16–16 UniJet THD	Dolynator	15	
-	22665	150			Polyester	24	
				11/16–16 UniJet THD	Brass (36" lengths also available in stainless steel)	8	- Curved body
						18	
	6671	125	11/16–16			24	
di d	00/1	120	UniJet THD			30	
						36	
						48	

Do not exceed the maximum operating pressure of the lowest rated accessory item within the spray system. Contact your sales engineer for additional options.

MATERIAL OPTIONS

Material	Material Code
Aluminum	AL
Brass	(none)
Stainless steel	SS
Zinc-plated steel	IZP

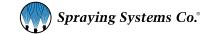
ORDERING INFORMATION

GUNJET® SWIVEL CONNECTORS AND ADAPTERS

CONNECTOR AND ADAPTER OPTIONS

Connector	Туре	Max. Pressure (psi)	Max. Temperature (°F)	Inlet Conn. (in.)	Outlet Conn. (in.)	Material	Special Features
	8510 strainer	4000	200	1/4 NPS (M)	1/4 NPS (F)	Stainless steel	Choice of screen mesh sizes. Internal support prevents screen collapse at high pressure.
	9765	4000	200	1/4 NPS (M)	1/4 NPS (F)	Stainless steel & Delrin® bearings	
	36560 swivel	2000	200	3/8 NPT (M)	3/8 NPS (F)	Nickel-plated brass	Boom swivel designed for ceiling mount.
	21550-90NP	1500	200	1/4, 3/8 NPT (M)	3/8 NPT or BSPT (F)	Delrin® bearings and Buna-N O-ring	Ceiling-mount.
	21550 swivel	1500	200	1/4, 3/8 NPT or BSPT (F)	1/4, 3/8 NPT or BSPT (M)	Brass	Self-lubricating PTFE-filled bearings
	15950 swivel	1000	200	3/8 NPT or BSPT (M)	3/8 NPT or BSPT (F)	Brass	Allows swiveling under pressure and side loads

GUNJET® SWIVEL CONNECTORS AND ADAPTERS


SPRAY GUNS

Connector	Туре	Max. Pressure (psi)	Max. Temperature (°F)	Inlet Conn. (in.)	Outlet Conn. (in.)	Material	Special Features
	11990 In-line swivel	1000	180	1/4 to 1/2 NPT or BSPT (F), 1/4 to 1/2 NPT or BSPT (M)	1/4 NPS (M), 1/4 to 1/2 NPT or NPS (F)	Brass	Leakproof hose, 360° swivel eliminates hose kinking and operator fatigue.
	13212	150	_	3/4 garden hose thread (F)	3/8, 1/2 NPT or BSPT (M)	Brass	
	14269	125	_	3/4 garden hose thread (F)	1/4 NPS (F) or 1/4 NPT (F)	Brass	
	14643	4000	_	11/16–16 THD (F)	1/8, 1/4" NPT or BSPT (F)	Nickel-plated steel or stainless steel	
		2000	_	11/16–16 THD (F)	1/8, 1/4, 3/8, 1/2, 3/4 NPT or BSPT (F)	303 Stainless steel	
	4676	1000	_	11/16–16 THD (F)	1/8, 1/4, 3/8, 1/2, 3/4 NPT or BSPT (F)	Brass and nickel-plated brass	
		125	_	11/16–16 THD (F)	1/8, 1/4, 3/8, 1/2, 3/4 NPT or BSPT (F)	Nylon	

Do not exceed the maximum operating pressure of the lowest rated accessory item within the spray system. Contact your sales engineer for additional options.

MATERIAL OPTIONS

Material	Material Code
Brass	(none)
Nickel-plated brass	NP
Stainless steel	SS
Nylon	NYB

SPRAY GUNS

GUNJET® SWIVEL CONNECTORS AND ADAPTERS

ORDERING INFORMATION

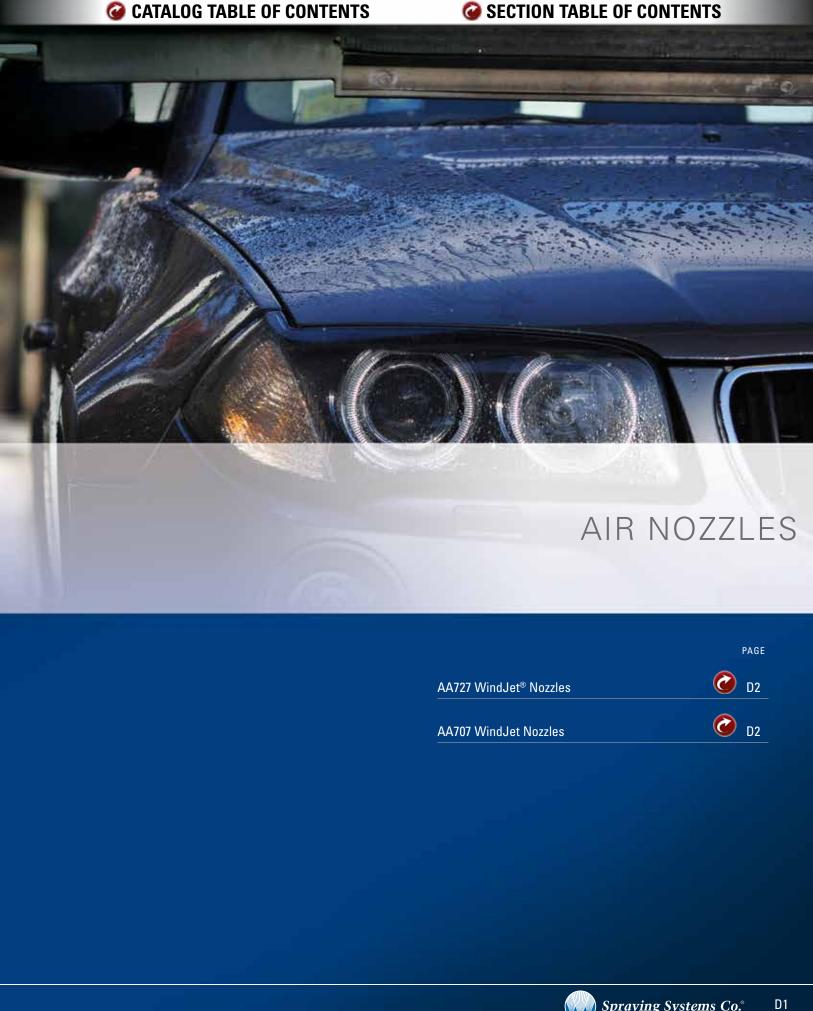
OUTLET ADAPTER

BSPT connections require the addition of a "B" in the prefix of the part number. Example: B15950.

SPRAY GUN CONNECTORS

BSPT connections require the addition of a "B" in the prefix of the part number. Example: B15950.

SPRAY GUN CONNECTORS


BSPT connections require the addition of a "B" in the prefix of the part number. Example: B15950.

11990 DIMENSIONS

Connection Type	Swivel Ordering No.	Connection Thread Size	Approx. Overall Length (in.)	
Female x Female	11990-7	1/4 (F) NPT/BSPT	1/4 (F) NPT/BSPT	2-1/16
remaie x remaie	11990-20	3/8 (F) NPT/BSPT	1/4 (F) NPS	1-3/4
	11990-8	1/4 (M) NPT/BSPT	1/4 (M) NPT/BSPT	2-1/4
Male x Male	11990-13	1/4 (M) NPT/BSPT	1/4 (M) NPS	2-1/4
Male X Male	11990-15	3/8 (M) NPT/BSPT	3/8 (M) NPT/BSPT	2-5/16
	11990-18	1/2 (M) NPT/BSPT	1/2 (M) NPT/BSPT	2-3/4
Mole v Femele	11990-9	1/4 (M) NPT/BSPT	1/4 (F) NPT/BSPT	2-3/16
Male x Female	11990-21	3/8 (M) NPT/BSPT	1/4 (F) NPS	2

11990 WITH HOSE SHANK DIMENSIONS

Connection Type		Conne	ctions	Approx. Overall Length	For Hose ID
	Swivel Ordering No.	Thread Sizes (NPT/BSPT or NPS in.)	Shank Dia. (in.)	(in.)	(in.)
Female x Hose Shank	11990-60	1/4 (F) NPS	.281	2-5/8	1/4
Male x Hose Shank	11990-62	1/4 (M) NPT/BSPT	.281	2-5/16	1/4
	11990-63	1/4 (M) NPS	.281	2-3/8	1/4
	11990-64	1/4 (M) NPT/BSPT	.406	2-15/32	3/8

WINDJET® AIR NOZZLES

OVERVIEW: WINDJET AIR NOZZLES

- Air nozzles convert a low-pressure volume of compressed air into a targeted high-velocity concentrated air stream, flat-fan or curtain of high-impact air
- A significant reduction in compressed air consumption compared to open pipes
- Improved safety. The design of WindJet air nozzles prevents dead-ending should the nozzle accidentally be placed against a flat surface
- The targeted air stream delivered by the nozzles can improve the effectiveness and efficiency of drying and blow-off

WINDJET NOZZLE OPTIONS

AA727

Generate efficient, controlled flat fan air pattern for a uniform spray distribution

Designed to maintain spray pattern integrity

Recessed orifices protect against external damage and offer air escape should the nozzles accidentally be placed against a flat surface

Low noise levels

Can be mounted side-by-side for air curtain applications

1/4" NPT or BSPT (M) ABS or PPS

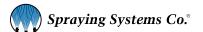
1/4" NPT or BSPT (F) ABS only

AA707

Produce tightly directed, round spray pattern

Low noise levels

Color-coded aluminum caps for easy identification of flow rates


Recessed orifices

1/4" NPT or BSPT (M) ABS or PPS

IDEAL FOR:

- · Drying door handles
- · Drying mirrors
- Window trim

SPECIFICATIONS

Nozzle	Connection	Conn. Size (in.)	Materials	Max. Operating Temperature (°F)
	M 1/4		Polyphenylene sulfide (RY) Aluminum (AL)	At 100 psi 180 450
AA727	M or F	1/4	ABS plastic	At 100 psi 170
	М	1/4	Stainless steel (SS)	At 150 psi 500
AA707	M	1/4	Polyphenylene sulfide (RY) PVDF (KY) Aluminum (AL) Stainless steel (SS) ABS plastic	At 125 psi 400 220 450 450 180

ORDERING INFORMATION

WINDJET AIR NOZZLES

BSPT connections require the addition of a "B".

PERFORMANCE DATA: STANDARD ANGLE SPRAY									
Name I a Toma	Inlet Conn.	Capacity	Cap Color	Air Con	sumption Capacity (st	andard cubic feet per	minute)		
Nozzle Type	(in.)	Size	(Aluminum Only)	10 psi	30 psi	60 psi	90 psi		
		11	_	5.0	8.9	14.4	19.8		
AA727	1/4 (M, F)	15	_	6.8	12.8	21.3	29.6		
		23	_	9.9	18.4	30.9	43.4		
		11	green	5.2	9.6	16.0	22.3		
AA707	1/4 (M)	15	yellow	6.4	12.4	21.0	29.4		
		23	red	10.4	19.2	32.3	45.0		

WINDJET® AIR NOZZLES

DIMENSIONS AND WEIGHTS

Nozzle	Model	A (in.)	B (in.)	Net Weight (oz.)
A	AA727 (M)	3-9/16	2	4.1
В	AA727 (F)	3-9/16	2	0.7
A B	AA707 (M)	1-7/8	1	1.6

Based on largest/heaviest version of each type.

ACCESSORIES

Siphon Injectors Adjustable Ball Fittings **Check Valves** Throttling and Pressure Relief/Regulating Valves

SIPHON INJECTORS

50580 ADJUSTABLE SIPHON INJECTOR

- Provides the flexibility to easily adjust and lock in different mixture ratios
- Numbered index adjustment screw enables measured and repeatable siphon control
- Lock-nut to secure settings from system vibrations
- · Needle valve design to ensure precise control of flow
- · Easy-open, check-valve design on siphon inlet
- Flow range: 0.5 to 6.0 gpm (1.9 to 22.7 lpm)
- Request Data Sheet 50580 for flow capacity information

13340 FIXED SIPHON INJECTOR

- Calibrated to provide proper siphoning when matched with system flow rates
- · Easy-open, check-valve design on siphon inlet
- Request Data Sheet 13340 for specific siphon rate information

SPECIFICATIONS

Model Number	Max. Pressure (psi)	Inlet Conn. (in.)	Outlet Conn. (in.)	Siphon Inlet Conn. (in.)	Max. Temperature (°F)	Approx. Weight (oz.)	Material
50580	4000	3/8" or 1/2" NPT or BSPT (F)	3/8" or 1/2" NPT or BSPT (M)	.281" Dia. Hose Barb or 1/4" NPT or BSPT (M)	300	8	Brass or 303 Stainless Steel
13340	4000	3/8" or 1/2" NPT or BSPT (F)	3/8" or 1/2" NPT or BSPT (M)	.281" Dia. Hose Barb or 1/4" NPT or BSPT (M)	300	6-1/2	Brass or 303 Stainless Steel

Other materials available upon request.

ORDERING INFORMATION

50580 ADJUSTABLE SIPHON INJECTOR

50580 ADJUSTABLE SIPHON INJECTOR

FIXED SIPHON INJECTOR

ADJUSTABLE BALL FITTINGS

ACCESSORIES

BALL FITTINGS

- Allow positioning of spray for more exact control of spray direction and reduced over-spraying
- Smooth finished surfaces assure leak-proof connections

BALL FITTING OPTIONS

36275 Adjustable Ball

1/8" to 3/4" male inlet conn./ female outlet conn. NPT or BSPT Max. pressure: 300 psi (20 bar) Materials: Brass. 303 and

Materials: Brass, 303 and 316 stainless steel

MATERIAL OPTIONS

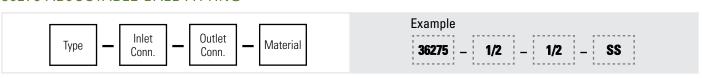
Material	Code
Brass	(none)
303 Stainless Steel	SS
316 Stainless Steel	316SS

If inlet and outlet connections are different sizes, material options are brass or 303 Stainless Steel. Other materials available upon request.

37235

1/4" to 1/2" inlet male conn. NPT
Max. pressure: 125 psi (9 bar)
Max. temperature: 180° (82°C)
Materials: ProMax® body with
polyphthalamide cap and
EPDM rubber o-ring (Viton® optional)

Shown with CT_40 Clip-Eyelet® tip additional tips are available



SPECIFICATIONS

Model Number	Inlet Conn. (in.)	Outlet Conn. (in.)	Total Included Angle of Adjustment	L (in.)	D (Dia.) (in.)	Hex. (in.)	Net Weight (oz.)
	1/8	1/8		1.375	0.969	7/8	2
	1/4	1/4		1.563	1.094	1	3
	1/4	1/8		1.563	1.094	1	3.1
	3/8	3/8		1.781	1.375	1-1/4	5.5
36275	3/8	1/4	45°	1.375	1.004	1-1/4	5.8
	1/2	1/2		2.219	1.656	1-1/2	10
	1/2	1/4		1.875	1.375	1-1/2	5.8
	1/2	3/8		1.875	1.375	1-1/2	5.4
	3/4	3/4		2.406	1.906	1-7/8	17

ORDERING INFORMATION

36275 ADJUSTABLE BALL FITTING

CHECK VALVES

CHECK VALVES

- Positive, drip-free shut-off maintains line pressure during on/off spraying cycles
- Minimal pressure drop through CV and diaphragm valves
- · Prevent back flow
- Viton® 0-ring soft-seat provides positive seal – no leakage
- For more information, request Data Sheet 12527

MATERIAL OPTIONS

Material	Code
Brass	No code
Nylon (12328 Only)	NYB
303 stainless steel	SS

OPTIONS

CV Series

AACV 1/8", 1/4" female inlet and female outlet conn.

BACV 1/8", 1/4" male inlet and female outlet conn.

ABCV 1/8", 1/4" female inlet and male outlet conn.

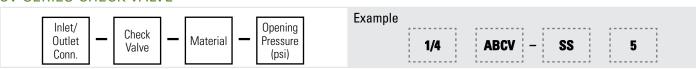
BBCV 1/8", 1/4" male inlet and male outlet conn.

12328 Diaphragm

1/2", 3/4" male inlet and female outlet conn.

Max. flow rate: 15 gpm (57 lpm) 7 psi (0.5 bar) opening pressure

Material: Nylon



SPECIFICATIONS

Check Valve	Max. Pressure (psi)	Max. Flow Rate (gpm)	Spring Rates (psi)	Opening Pressure (psi)	Inlet Conn. (in.)	Outlet Conn. (in.)
AACV	150	2	5, 10 or 20	-	1/8 or 1/4 NPT or BSPT (F)	1/8 or 1/4 NPT or BSPT (F)
BACV	150	2	5, 10 or 20	_	1/8 or 1/4 NPT or BSPT (M)	1/8 or 1/4 NPT or BSPT (F)
ABCV	150	2	5, 10 or 20	_	1/8 or 1/4 NPT or BSPT (F)	1/8 or 1/4 NPT or BSPT (M)
BBCV	150	2	5, 10 or 20	_	1/8 or 1/4 NPT or BSPT (M)	1/8 or 1/4 NPT or BSPT (M)
12328	125	15	-	7	1/2 or 3/4 NPT or BSPT (M)	1/2 or 3/4 NPT or BSPT (F)


ORDERING INFORMATION

CV SERIES CHECK VALVE

BSPT connections require the addition of a "B" prior to the inlet connection. Opening pressure is ordered in psi.

12328 DIAPHRAGM CHECK VALVE

THROTTLING AND PRESSURE RELIEF/REGULATING VALVES

ACCESSORIES

THROTTLING AND PRESSURE RELIEF/ REGULATING VALVES

- Easily regulate flow in systems using centrifugal pumps with throttling valves; adjustable cap and lock ring provide easy valve control
- Control line pressure and minimize liquid waste with adjustable relief valves that return excess liquid back to the liquid source or pump inlet

PRESSURE RELIEF VALVE OPTIONS

23120

Polypropylene body with nylon adjusting cap means excellent chemical resistance Easily, hand-adjustable pressure relief valve Maintain line pressure with adjustable locknut 1/2", 3/4" male inlet and female outlet conn Material: Polypropylene

8460

1/2", 3/4" male inlet and female bypass conn.

Diaphragm-style pressure relief valve
Female pressure gauge port and plug
for use when pressure gauge not used
Fairprene® diaphragm seal prevents
fluid from working parts

Materials: Aluminum housing with nylon body

9840

Diaphragm-style pressure relief valve Fairprene® diaphragm seal prevents fluid from working parts and provides responsive, chatter-free operation

Additional port for pressure gauge installation

Materials: Aluminum and brass housing with nylon body

6815

1/2", 3/4" male inlet and female outlet conn.

Piston-type pressure relief valve

Free-floating design improves speed and sensitivity

Full flow with minimum pressure loss due to extra large valve passage

Materials: Aluminum, brass, hardened stainless steel

110

1", 1-1/4", 1-1/2" conn.

Piston-type pressure relief valve

Guide vane seat stabilizes flow for vibration reduction

Free-floating design improves speed and sensitivity

Full flow with minimum pressure loss due to extra-large valve passage

Removable valve bonnet: no disturbance of fluid line connections

Materials: Aluminum, brass, ductile iron, hardened stainless steel

THROTTLING VALVE OPTION

23520

1/2", 3/4" male inlet and female outlet conn.

Throttling valve

Material: Polypropylene

MATERIAL OPTIONS

Material	Code
Aluminum	AL
Brass	No code
Hardened stainless steel	HSS
Nylon/Aluminum	NY
Polypropylene	PP

THROTTLING AND PRESSURE RELIEF/REGULATING VALVES

SPECIFICATIONS

Inlet/Outlet Pipe Conn.	Max. Operating Pressure	Valve Type						
(in.)	(psi)	23520	23120	8460	6815	6815-HSS	6815-AL	110
	Up to 300							•
1/4	300 to 700							•
	700 to 1000							•
	Up to 300							•
3/8	300 to 700							•
	700 to 1000							•
	Up to 50				•		•	
	Up to 150	•	•					
1/2	Up to 300			•	•		•	
	300 to 700				•		•	
	700 to 1200				•	•		
	Up to 50				•		•	
	Up to 150	•	•					
3/4	Up to 300			•	•		•	
	300 to 700				•		•	
	700 to 1200				•	•		

ORDERING INFORMATION

PRESSURE RELIEF/REGULATING VALVE

BSPT connections require the addition of a "B" prior to the inlet connection. Pressure rating is ordered in psi.

THROTTLING VALVE

ACCESSORIES

DIMENSIONS AND WEIGHTS

Valve	Accessory Type	Inlet/Outlet Conn. (in.)	L at Max. Opening Height (in.)	A (in.)	B (in.)	W (in.)	Net Weight (oz.)
B _i	23520	1/2	4	_	1.175	2	2.9
		3/4	4.5	_	1.409	2.25	2.9
A W	23120	1/2	5.25	1.063	2.375	2.63	5.65
		3/4	5.25	1.063	2.375	2.69	5.75
L B W	9840	1/2	8.69	1.5	2.94	3.2	2
		3/4	8.69	1.5	2.94	3.2	2
L B W	8460	1/2	8	1.218	1.624	2.813	14.8
		3/4	8	1.218	1.624	2.813	14.5
L B	6815	1/2	6.625	1.191	2.750	2.5	20
		3/4	6.625	1.191	2.750	2.5	20
L B	110	1/4	4	-	1.219	1.69	7.1
		3/8	4	-	1.219	1.69	7.1
		1	7.25	_	2.515	2.69	43.4
		1-1/4	7.5	-	2.610	2.75	49.8
		1-1/2	7.75	_	4.210	2.968	56

THROTTLING AND PRESSURE RELIEF/REGULATING VALVES

Based on the largest/heaviest version of each type.

TRADEMARK REGISTRATION AND OWNERSHIP HOW TO ORDER

SPRAYING SYSTEMS CO.'S TRADEMARK USAGE

The following is a current list of Spraying Systems Co.'s trademarks registered in the United States. Some marks are registered in other countries as well.

 $\begin{array}{ll} \text{Clip-Eyelet}^{\$} & \text{QCIMEG}^{\text{TM}} \\ \text{ConeJet}^{\$} & \text{QJ}^{\$} \\ \text{DeflectoJet}^{\$} & \text{QuickJet}^{\$} \\ \text{FlatJet}^{\$} & \text{ProMax}^{\$} \end{array}$

FloodJet® Spraying Systems Co.®

FoamJet® TriggerJet®

FullJet® UniJet® VeeJet® IMEG® WashJet® WindJet® WindJet®

REGISTERED TRADEMARK CREDITS

The following trademarks are registered to other entities in the US and may be registered in other countries as well.

Celcon® Celanese Corporation
DELRIN® E.I. du Pont de Nemours and

Company

Fairprene® E.I. du Pont de Nemours and

Company

Kynar[®] Arkema, Inc.

Viton® DuPont Performance Elastomers

Spraying Systems Co. reserves the right to make changes in specifications or design of the products shown in the catalog or to add improvements at anytime without notice or obligation.

HOW TO ORDER

In each product section, you'll find ordering examples. Start by reviewing the example and then create the part number by indicating the inlet connection, material and capacity size.

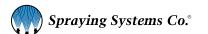
SPRAY GUN ASSEMBLY

For your convenience, there are multiple ways to place an order: phone, fax and online

In North America

Phone: 1.800.95.SPRAY | Fax: 1.888.95.SPRAY

Outside North America


Phone: 1.630.665.5000 | Fax: 1.630.260.0842

Online ordering with a credit card is also available. Visit **spray.com/ispray**. You'll find helpful selection tools and a Live Chat option for immediate assistance.

FINDING PRODUCTS

- Consult the Product Index on page i-3 if you know the name of the product
- Consult the Part Number Index on **page i-4** if you have the part number. Part numbers are shown numerically and alpha-numerically

Selection assistance is also available by calling **1.800.95.SPRAY**. Representatives in your local sales office will help you determine which products best meet your application requirements. (Call **1.630.665.5000** outside North America or visit **spray.com** to find information for the sales office in your area.)

TERMS AND CONDITIONS OF SALE

(1) MODIFICATION OF TERMS

Seller's acceptance of any order is expressly subject to Buyer's assent to each and all of the terms and conditions set forth below and Buyer's assent to these terms and conditions shall be conclusively presumed from Buyer's receipt of this document without prompt written objection thereto or from Buyer's acceptance of all or any part of goods ordered. No addition to or modification of said terms and conditions shall be binding upon Seller unless specifically agreed to by Seller in writing. If Buyer's purchase order or other correspondence contains terms or conditions contrary to or in addition to the terms and conditions set forth below, acceptance of any order by Seller shall not be construed as assent to such contrary or additional terms and conditions or constitute a waiver by Seller of any of the terms and conditions.

(2) PRICE

Unless otherwise specified: (a) all prices, quotations, shipments and deliveries by Seller are (i) EXW (Incoterms® 2010) if shipped to the Buyer within the United States, and (2) in all other circumstances DAP Buyer's location (Incoterms 2010); (b) all base prices together with related extras and deductions, are subject to Seller's price in effect at the time of shipment; and (c) notwithstanding the use of the shipping term DAP and without any effect on the point at which the risk of loss shifts from Seller to Buyer, all transportation, import costs and other related charges are for the account of Buyer, including all increases or decreases in such charges prior to shipment. Payment of said price shall be due at the remittance address shown on the Seller's invoice upon receipt of Seller's invoice unless otherwise specified. Interest will be charged at a rate of 1 to 1-1/2% per month on all balances outstanding more than 30 days after the date of the invoice. Price includes Seller's standard packaging. Special packaging requirements shall be quoted at an additional price.

(3) UNIFORM COMMERCIAL CODE

THIS IS A CONTRACT FOR THE SALE OF GOODS. SELLER AND BUYER EXPRESSLY AGREE THAT ANY SERVICES PROVIDED PURSUANT TO THIS CONTRACT ARE MERELY INCIDENTAL TO THE SALE OF GOODS, AND AS SUCH, SHALL BE DEEMED GOODS UNDER ARTICLE 2 OF THE UNIFORM COMMERCIAL CODE. SELLER AND BUYER FURTHER AGREE THAT ANY DISPUTES ARISING FROM THIS CONTRACT SHALL BE GOVERNED BY ARTICLE 2 OF THE UNIFORM COMMERCIAL CODE.

(4) MINIMUM BILLING

Contact your regional office representative for any minimum order requirements.

(5) WARRANTIES

Seller warrants that its products will conform to and perform in accordance with the products' specifications. Seller warrants that the products do not infringe upon any copyright, patent, or trademark. THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THOSE CONCERNING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

(6) LIMITATION OF REMEDIES

Buyer's remedies under this warranty shall be limited to the replacement, repair, or refund of the purchase price for any defective product at the Seller's option. Products claimed to be defective and for which repair or replacement is desired shall be, if requested by the Seller, returned transportation prepaid to Seller's plant for inspection. Results of ordinary wear and tear, improper operation, or maintenance or use of corrosive or abrasive materials shall not be considered a defect in material or workmanship. Any component part manufactured by another is not covered by Seller's warranty, but only by such warranty as its manufacturer gives. Because of the difficulty of asserting and measuring damages hereunder, it is agreed that, except for claims for bodily injury, Seller's liability to the Buyer or any third party, for any losses or damages, whether direct or otherwise, arising out of the purchase of product from Seller by Buyer shall not exceed the total amount billed and billable to the Buyer for the product

hereunder. IN NO EVENT WILL SELLER BE LIABLE FOR ANY LOSS OF PROFITS OR OTHER SPECIAL OR CONSEQUENTIAL DAMAGES, EVEN IF SELLER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(7) QUALITY ASSURANCE

Seller shall have no obligation to ensure that any goods purchased from Seller meet any special Buyer quality assurance specifications and/or other special Buyer requirements unless such specifications and/or other requirements are specifically set forth in Buyer's purchase order and expressly accepted by Seller. In the event that any such goods supplied by Seller in connection therewith, are applied to an end use without the appropriate specification and/or other requirement therefore having been set forth in Buyer's purchase order and expressly accepted by Seller, Buyer shall indemnify and hold Seller harmless against any and all damages or claims for damages made by any person for any injury, fatal or nonfatal, to any person or for any damage to the property of any person incident to or arising out of such application.

(8) PRODUCT DISPOSAL & SUSTAINABILITY

Buyer is responsible for the disposal of goods supplied by seller in accordance with all applicable laws, regulations, and responsible recycling and/or sustainability practices.

(9) CLAIMS

Claims respecting the condition of goods, compliance with specifications or any other matter affecting goods shipped to Buyer must be made promptly and, unless otherwise agreed to in writing by Seller, in no event later than one (1) year after receipt of the goods buy Buyer. In no event shall any goods be returned, reworked or scrapped by Buyer without the express written authorization of Seller.

(10) DEFAULT IN PAYMENT

If Buyer fails to make payments on any contract between Buyer and Seller in accordance with Seller's terms, Seller, in addition to any other remedies available to it, may at its option, (i) defer further shipments until such payments are made and satisfactory credit arrangements are reestablished or (ii) cancel the unshipped balance of any order.

(11) TECHNICAL ASSISTANCE

Unless otherwise expressly stated by Seller, (a) any technical advice provided by Seller with respect to the use of goods furnished to Buyer shall be without charge; (b) Buyer shall have sole responsibility for selection and specification of the goods appropriate for the end use of such goods.

(12) SAFETY PRECAUTIONS

Buyer shall require its employees to use all safety devices, and proper safe operation procedures as set forth in manuals and instruction sheets furnished by Seller. Buyer shall not remove or modify any such device or warning sign. It is the Buyer's responsibility to provide all means that may be necessary to effectively protect all employees from serious bodily injury which otherwise may result from the method of particular use, operation, set up or service of the goods. The operator's or machine manual, ANSI safety standards, OSHA regulations and other sources should be consulted. If Buyer fails to comply with provisions of this paragraph or the applicable standards and regulations aforementioned, and a person is injured as a result thereof, Buyer agrees to indemnity and save Seller harmless from any liability or obligation incurred by Seller.

(13) CANCELLATION

Orders for goods specifically manufactured for Buyer cannot be canceled or modified by Buyer, and releases cannot be held up by Buyer, after such goods are in process except with the express written consent of Seller and subject to conditions then to be agreed upon which shall include, without limitation, protection of Seller against all loss.

INDEX

TERMS AND CONDITIONS OF SALE

(14) PATENTS

The Seller shall not be liable for any costs or damages incurred by the Buyer as a result of any suit or proceeding brought against Buyer so far as based on claims (a) that use of any product, or any part thereof furnished hereunder, in combination with products not supplied by the Seller or (b) that a manufacturing or other process utilizing any product, or any part thereof furnished hereunder, constitute knowing and willful infringement of patents or trademarks arising from compliance with Buyer's designs or specifications or instructions.

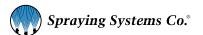
(15) COMPLETE AGREEMENT

THIS CONTRACT SETS FORTH THE ENTIRE AGREEMENT AND UNDERSTANDING OF THE PARTIES RELATING TO THE SUBJECT MATTER HEREOF, AND SUPERSEDES ALL PRIOR AGREEMENTS, DISCUSSIONS AND UNDERSTANDINGS BETWEEN THEM WHETHER ORAL OR WRITTEN, RELATING TO THE SUBJECT MATTER HEREOF.

(16) GOVERNING LAW

All orders are accepted by Seller at its mailing address in Wheaton, Illinois, and shall be governed by and interpreted in accordance with the laws of the State of Illinois. The United Nations Convention on Contacts for the International Sale of Goods of April 11, 1980 shall be excluded.

(17) FORCE MAJEURE


Neither party shall be in default of its obligations to the other party for any period of Force Majeure. "Force Majeure" shall mean any delay or failure of a party to perform its obligations to the other party due to causes beyond its control and without its fault or negligence. This shall include, without limitation, Acts of God, strike, civil commotion, acts of government, and any other comparable, non-foreseeable, and a serious event.

(18) CONFIDENTIAL INFORMATION

Buyer shall maintain Confidential Information in confidence using the same care as used for its own Confidential Information. Buyer shall not disclose or divulge any Confidential Information received by it from Seller in connection with any products or services supplied by Seller to Buyer or to a third party without prior written consent of Seller, and Buyer may not use any Confidential Information for any purpose other than for the manufacture, sale and maintenance of Buyer's products. For the purposes hereof, "Confidential Information" includes any and all information and data, including, but not limited to, any business, commercial, intellectual property, technical information and data disclosed by Seller to Buyer in connection with the sale of Seller's products to Buyer, or relating to Seller's business relationship or the definition, development. marketing, selling, manufacture or distribution of Seller's products, whether disclosed orally, in writing or electronically, and irrespective of the medium in which such information or data is embedded, whether in tangible form or contained in an intangible storage medium. Confidential Information shall include any copies or abstracts made thereof, as well as any product, apparatus, modules, samples, prototypes or parts thereof.

(19) FAIR PRACTICES

Spraying Systems Co. considers for employment and hire qualified candidates without regard to race, religion, color, sex, sexual orientation, gender, gender identity, age, national origin, ancestry, citizenship, protected veteran or disability status or any factor prohibited by law, and as such affirms in policy and practice to support and promote the concept of equal employment opportunity and affirmative action, in accordance with all applicable federal, state, provincial and municipal laws.

PRODUCT

BALL FITTINGS
36275E3
37235E3
CHECK VALVES
12328E4
21950 B30
AACVE4
ABCVE4
BACVE4
BBCVE4
FLATJET® NOZZLES
PB20 - B21
F
FLOOD IET® NOZZI EC
FLOODJET® NOZZLES
KB22 - B23
FOAMJET® NOZZLES
7421B27 - B28
25775B27 - B28
8355-NY-BLB27 - B28
8360-1/4-NY-BLB27 - B28
8360-NY-BLB27 - B28
FJB26, B28
FJP-PPB26, B28
FJP-VSB26, B28
QJ1/4T-NYBB27 - B28
QJ1/4TT-NYBB27 - B28
QJ17560A-NY-BLB27 - B28
QJ22187-NYBB27 - B28
QJ7421-NYBB27 - B28
QJ8355-NY-BLB27 - B28
QJ8360-NY-BLB27 - B28
QJFJPB26, B28
T B24 - B25, B27
TTB24 - B25, B27
FULLJET® NOZZLES
GGB2 - B3
GG-WB2 - B3
HHB2 - B3
HH-WB2 - B3
GUNJET® SPRAY GUNS
AA30A C3 - C4
AA30L
AA30L-PP
AA60C2, C4
AA70C2, C4
PW4000A
PW4000ASC2, C4
JET STABALIZERS
11270 P20

GUNJET SPRAY EXTE	NSIONS
6671	C.9
7715	
9527	
12086	
15699	
20400-1/4M	
20400-1/4F	
22665	
9004-SS	
GUNJET SWIVEL	
CONNECTORS & ADAF	TERS
4676	C11 - C12
9765	
11990	
13212	
14269	
14643	
15950	
21550	
36560	
21550-90NP	
8510 Strainer	
PRESSURE RELIEF VAI	VES
110	E5 - E7
6815	
8460	E5 - E7
9840	E5 - E7
23120	
SIPHON INJECTORS	
13340	E2
50580	E2
THROTTLING RELIEF V	ALVES
23520	E5 - E7
RETAINERS	
114443-4-CELR	B29
114445-4-CELR	
CP1325	
CP8027-NYB	
CP18032A-NYB	
TRIGGERJET® SPRAY	
4688	C5, C7
6104	
6590	C5, C7
22650-PP	C6 - C7
22670-PP	C6 - C7
50800-15-PP-1/4	

UNIJET® STRAINER	S
4067	B31 - B32
4514	
5053	
6051	
7630	
8079	
4193A	
T130A	
UNIJET NOZZLE	
TPU	B24 - B25
VEEJET® NOZZLES	
H-DT	B13 - B16
H-DU	
H-U	
H-U-CKY Blue	
H-U-CKY Green	
H-U-CKY Light Green	
H-U-CKY Purple	
H-U-CKY White	
H-VV	
H-VV-CKY Blue	
H-VV-CKY Green	
H-VV-CKY Grey	
H-VV-CKY Light Blue	
H-VV-CKY Light Green	
H-VV-CKY Light Purple	
H-VV-CKY Purple	
H-VV-CKY White	
H-VVL	B13 - B16
WASHJET® NOZZLE	S
CERMEG	
IMEG	
MEG	
WEG	В4 - В7
WASHJET QUICK C	ONNECT
NOZZLES	
	D10 D10
QCIMEG	
QCMEG	B10 - B12
WINDJET® AIR NOZ	ZLES
AA707	
AA707 AA727	
88171	

11950...... B30

INDEX

@ CATALOG TABLE OF CONTENTS

NUMERIC AND ALPHABETICAL

1
110E5 - E7
11370 B30
11950 B30
11990C10, C12
12086C8
12328E4
13212C11 - C12
13340E2
14269
14643
15699
15950
114443-4-CELR B29 114445-4-CELR B29
114440-4-GELN DZ9
2

20400
20400
21550-90NP
21950
22665C9
22670-PP
23120E5 - E7
23520E5 - E7
25775B27 - B28
3 36275
4
4067B31 - B32
4193AB31 - B32
4514B31 - B32
4676
4688
5
5053B31 - B32
50580E2
50800-15-PP-1/4
50800-PP-1/4
6
6051B27 - B28
6104
6590
6671C9
6815 E5 - E7
7
7421B27 - B28
7630B31 - B32
7715C8

8	
8079	- E7 B28 B28 B28
9 9004-SS 9527 C10, 9840 E5	C8 C12
A AA30A C3 - AA30L AA30L - C3 - AA30L - C3 - AA31 C6 - AA36 AA36 C6 - AA36 AA40 C2 - AA70 AA707 D2 - AA727 AA27 D2 - AACV AACV AACV	C ² C ² C ² C ² D ² E ²
BBCV	
C CERMEG	B29 B29
FJ B26, I FJP-PP B26, I FJP-VS B26, I	B28
G GG	
H H-DT B13 - H-DU B13 - HH- B2 - HH-W B2 - H-U B13 - H-U-CKY Blue B16 - H-U-CKY Green B16 - H-U-CKY Light Green B16 - H-U-CKY Purple B16 - H-U-CKY White B16 - H-U-CKY White B16 - H-U-CKY White B16 - H-VV B13 -	B16 B3 B16 B17 B17 B17 B17

H-VV-CKY Blue	319 319 319 319 319
MEGB4 -	В
K <b22 -="" e<="" td=""><td>323</td></b22>	323
M MEGB4 -	В
P	C
QCIMEG	312 328 328 328 328 328 328 328
Γ ΓB24 - B25, E ΓΡUB24 - E ΓΤB24 - B25, E	325
W <i>N</i> EGB4 -	В