TECHNICAL REFERENCE TABLE OF CONTENTS

Basic Nozzle Characteristics	A2
Capacity and Specific Gravity	AS
Spray Performance Considerations	A
Pump Selection Guidelines	Ą
Pressure Drop	A
Maintenance Tips	A
Weights, Measurements and Formulas	AS
General Safety Instructions	A10

BASIC NOZZLE CHARACTERISTICS

Spray nozzles are precision components designed to yield very specific performance under specific conditions. To help you determine the best nozzle type for your application, the following chart summarizes the performance that each nozzle type is designed to deliver. Visit **youtube.com/sprayingsystems** for video demonstrations of spray patterns.

FLAT (EVEN) NOZZLES

- Provides even distribution of medium-sized drops throughout the thin, rectangular spray pattern
- When used on a header, nozzles are positioned for edge-to-edge pattern contact

FULL CONE NOZZLES

- Uses a unique internal vane design to produce a solid cone-shaped spray pattern
- Spray pattern consists of mediumto large-sized drops

FLAT SPRAY (TAPERED) NOZZLES

- Produces a tapered-edge flat spray pattern
- Used on spray headers to provide uniform coverage as a result of overlapping distributions

ATOMIZING (HYDRAULIC, FINE MIST) NOZZLES

 Produces a finely atomized, low capacity spray in a hollow cone pattern without use of compressed air

FLAT SPRAY (DEFLECTED-TYPE) NOZZLES

- Uses a deflector surface to form an even flat spray pattern consisting of medium-sized drops
- Large free passage design reduces clogging through the round orifice

AIR ATOMIZING AND AIR ASSISTED NOZZLES

- Produces a variety of cone and flat spray patterns through atomization of liquid by compressed air
- Internal mix impingement atomization forms very fine drops

SOLID STREAM NOZZLES

 Produces a solid stream spray with the highest impact per unit area

CAPACITY - FLUID CAPACITY VARIES WITH SPRAYING PRESSURE

The relationship of pressure and flow with a given orifice is:

$$\frac{\mathbf{Q}_1}{\mathbf{Q}_2} \sim \frac{(\mathbf{P}_1)^n}{(\mathbf{P}_2)^n}$$

Q = Flow Rate (in gpm or lpm)

P = Liquid pressure (in psi or bar)

n = Flow exponent

To approximate any unknown flow or pressure, use this formula when the other variables are known. The "n" exponent is used to approximate the ratio of pressure to flow based on the type of spray pattern.

Example:

To determine the flow rate of water for a 1/4G-10 standard full cone nozzle at 150 psi or at 10 bar, consult the performance charts in this catalog.

You will find that:

- The spray angle is 65°
- Flow (Q₁) at 40 psi = 1.9 gpm
- Pressure $(P_1) = 40 \text{ psi}$
- Pressure $(P_2) = 150 \text{ psi}$

Solving for $Q_2 = 3.5$ gpm

$$\Omega_2 = \frac{\Omega_1}{(P_1/P_2)^n} = \frac{1.9 \text{ gpm}}{(40/150)^{.46}}$$
 $\Omega_2 = \frac{\Omega_1}{(P_1/P_2)^n} = \frac{7.5 \text{ lpm}}{(3/10)^{.46}}$

- The spray angle is 65°
- Flow (Q_1) at 3 bar = 7.5 lpm
- Pressure $(P_1) = 3$ bar
- Pressure $(P_2) = 10$ bar Solving for $Q_2 = 13$ lpm

$$Q_2 = \frac{Q_1}{(P_1/P_2)^n} = \frac{7.5 \text{ lpm}}{(3/10)^{.46}}$$

FLOW EXPONENT FOR SPECIFIC NOZZLE TYPES

Nozzle Type	Exponent "n"
Hollow Cone Nozzles — All Full Cone Nozzles — Vaneless, 15° and 30° Series Flat Spray Nozzles — All Solid Stream Nozzles — All Spiral Nozzles — All	.50
Full Cone Nozzles – Standard, Square, Oval and Large Capacity	.46
Full Cone Nozzles – Wide Spray and Wide Square Spray	.44

Visit spray.com/sprayware for online flow rate and spray coverage calculators.

SPECIFIC GRAVITY

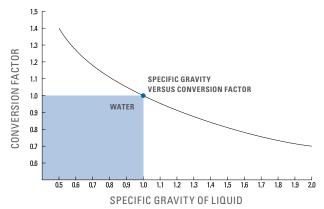
All capacity tabulations in this catalog are based on water.

Since the specific gravity of a liquid affects its flow rate, tabulated catalog capacities must be multiplied by the conversion factor that applies to the specific gravity of the liquid being sprayed as explained below.

Specific gravity is the ratio of the density of a fluid compared to the density of water. The specific gravity of water is defined as 1. When spraying fluids other than water, specific gravity must be considered in the flow calculations.

$$\mathbf{Q}_2 = \mathbf{Q}_1(\text{water}) \times \frac{1}{\sqrt{\mathbf{SG}}}$$

Using the previous example:

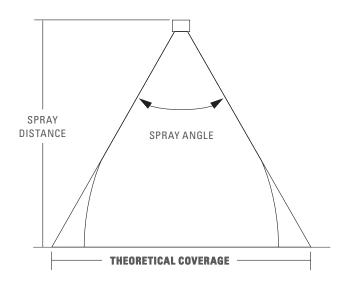

- Fluid sprayed is heavier than water and has a specific gravity of 1.4
- Flow of water at 150 psi = 3.5 gpm
- Heavy fluid $(\Omega_2) = \Omega_1(\text{water})*1/\sqrt{1.4}$

$$Q_2 = \frac{3.5 \text{ gpm} * 1}{\sqrt{1.4}} = 2.95 \text{ gpm}$$

- Fluid sprayed is heavier than water and has a specific gravity of 1.4
- Flow of water at 10 bar = 13 lpm
- Heavy fluid $(Q_2) = Q_1(\text{water})*1/\sqrt{1.4}$

$$Q_2 = \frac{13 \text{ lpm * 1}}{\sqrt{1.4}} = 11 \text{ lpm}$$

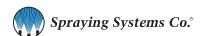
SPECIFIC GRAVITY VERSUS CONVERSION FACTOR



KEY: Conversion factor multiplied by the capacity of the nozzle when spraying water gives the capacity of the nozzle when spraying a liquid with a specific gravity corresponding to the conversion factor. This conversion factor accounts only for the effect of specific gravity on capacity and does not account for other factors affecting capacity.

SPRAY ANGLE AND COVERAGE

Tabulated spray angles indicate approximate spray coverage based on spray or distribution of water. In actual spraying, the effective spray angle varies with spray distance. Liquids more viscous than water form relatively smaller spray angles (or even a solid stream), depending upon viscosity, nozzle capacity and spraying pressure. Liquids with surface tensions lower than water will produce relatively wider spray angles than those listed for water. This table lists the theoretical coverage of spray patterns as calculated from the included spray angle of the spray and the distance from the nozzle orifice. Values are based on the assumption that the spray angle remains the same throughout the entire spray distance. In actual practice, the tabulated spray angle does not hold for long spray distances. If the spray coverage requirement is critical, request data sheets for specific spray coverage data.


Example: A spray nozzle with an angle of 65° spraying 15" (39 cm) from the target provides 19.2" (48.8 cm) of coverage

THEORETICAL SPRAY COVERAGE AT VARIOUS DISTANCES IN INCHES (CM) FROM NOZZLE ORIFICE

Spray	2	5	4	10	6	15	8	20	10	25	12	30	15	40	18	50	24	60	30	70	36	80	48	100
Angle	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm	in.	cm
5° 10° 15° 20° 25°	.2 .4 .5 .7	.4 .9 1.3 1.8 2.2	.4 .7 1.1 1.4 1.8	.9 1.8 2.6 3.5 4.4	.5 1.1 1.6 2.1 2.7	1.3 2.6 4.0 5.3 6.7	.7 1.4 2.1 2.8 3.5	1.8 3.5 5.3 7.1 8.9	.9 1.8 2.6 3.5 4.4	2.2 4.4 6.6 8.8 11.1	1.1 2.1 3.2 4.2 5.3	2.6 5.3 7.9 10.6 13.3	1.3 2.6 3.9 5.3 6.6	3.5 7.0 10.5 14.1 17.7	1.6 3.1 4.7 6.4 8.0	4.4 8.8 13.2 17.6 22.2	2.1 4.2 6.3 8.5 10.6	5.2 10.5 15.8 21.2 26.6	2.6 5.2 7.9 10.6 13.3	6.1 12.3 18.4 24.7 31.0	3.1 6.3 9.5 12.7 15.9	7.0 14.0 21.1 28.2 35.5	4.2 8.4 12.6 16.9 21.2	8.7 17.5 26.3 35.3 44.3
30°	1.1	2.7	2.1	5.4	3.2	8.0	4.3	10.7	5.4	13.4	6.4	16.1	8.1	21.4	9.7	26.8	12.8	32.2	16.1	37.5	19.3	42.9	25.7	53.6
35°	1.3	3.2	2.5	6.3	3.8	9.5	5.0	12.6	6.3	15.8	7.6	18.9	9.5	25.2	11.3	31.5	15.5	37.8	18.9	44.1	22.7	50.5	30.3	63.1
40°	1.5	3.6	2.9	7.3	4.4	10.9	5.8	14.6	7.3	18.2	8.7	21.8	10.9	29.1	13.1	36.4	17.5	43.7	21.8	51.0	26.2	58.2	34.9	72.8
45°	1.7	4.1	3.3	8.3	5.0	12.4	6.6	16.6	8.3	20.7	9.9	24.9	12.4	33.1	14.9	41.4	19.9	49.7	24.8	58.0	29.8	66.3	39.7	82.8
50°	1.9	4.7	3.7	9.3	5.6	14.0	7.5	18.7	9.3	23.3	11.2	28.0	14.0	37.3	16.8	46.6	22.4	56.0	28.0	65.3	33.6	74.6	44.8	93.3
55°	2.1	5.2	4.2	10.4	6.3	15.6	8.3	20.8	10.3	26.0	12.5	31.2	15.6	41.7	18.7	52.1	25.0	62.5	31.2	72.9	37.5	83.3	50.0	104
60°	2.3	5.8	4.6	11.6	6.9	17.3	9.2	23.1	11.5	28.9	13.8	34.6	17.3	46.2	20.6	57.7	27.7	69.3	34.6	80.8	41.6	92.4	55.4	115
65°	2.5	6.4	5.1	12.7	7.6	19.1	10.2	25.5	12.7	31.9	15.3	38.2	19.2	51.0	22.9	63.7	30.5	76.5	38.2	89.2	45.8	102	61.2	127
70°	2.8	7.0	5.6	14.0	8.4	21.0	11.2	28.0	14.0	35.0	16.8	42.0	21.0	56.0	25.2	70.0	33.6	84.0	42.0	98.0	50.4	112	67.2	140
75°	3.1	7.7	6.1	15.4	9.2	23.0	12.3	30.7	15.3	38.4	18.4	46.0	23.0	61.4	27.6	76.7	36.8	92.1	46.0	107	55.2	123	73.6	153
80°	3.4	8.4	6.7	16.8	10.1	25.2	13.4	33.6	16.8	42.0	20.2	50.4	25.2	67.1	30.3	83.9	40.3	101	50.4	118	60.4	134	80.6	168
85°	3.7	9.2	7.3	18.3	11.0	27.5	14.7	36.7	18.3	45.8	22.0	55.0	27.5	73.3	33.0	91.6	44.0	110	55.0	128	66.0	147	88.0	183
90°	4.0	10.0	8.0	20.0	12.0	30.0	16.0	40.0	20.0	50.0	24.0	60.0	30.0	80.0	36.0	100	48.0	120	60.0	140	72.0	160	96.0	200
95°	4.4	10.9	8.7	21.8	13.1	32.7	17.5	43.7	21.8	54.6	26.2	65.5	32.8	87.3	39.3	109	52.4	131	65.5	153	78.6	175	105	218
100°	4.8	11.9	9.5	23.8	14.3	35.8	19.1	47.7	23.8	59.6	28.6	71.5	35.8	95.3	43.0	119	57.2	143	71.6	167	85.9	191	114	238
110° 120° 130° 140° 150°	5.7 6.9 8.6 10.9 14.9	14.3 17.3 21.5 27.5 37.3	11.4 13.9 17.2 21.9 29.8	28.6 34.6 42.9 55.0 74.6	17.1 20.8 25.7 32.9 44.7	42.9 52.0 64.3 82.4 112	22.8 27.7 34.3 43.8 59.6	57.1 69.3 85.8 110 149	28.5 34.6 42.9 54.8 74.5	71.4 86.6 107 137 187	34.3 41.6 51.5 65.7 89.5	85.7 104 129 165 224	42.8 52.0 64.4 82.2 112	114 139 172 220 299	51.4 62.4 77.3 98.6	143 173 215 275 –	68.5 83.2 103 –	171 208 257 –	85.6 104 - -	200 243 - - -	103 - - - -	229 - - - -	- - - -	286 - - - -
160° 170°	22.7 45.8	56.7 114	45.4 91.6	113 229	68.0	170 –	90.6	227	113	284	- -	- -	_ _	_ _	_ _	_ _	- -	- -	- -	_ _	_ _	_ _	_ _	_ _

Visit spray.com/sprayware for online flow rate and spray coverage calculators.

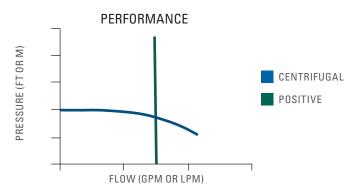
PUMPS

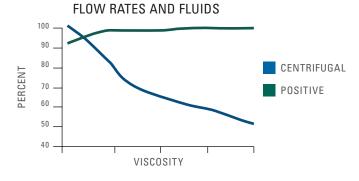
Every operation using spray nozzles requires a method to provide fluid flow. Fluid flow can be provided by gravity, air pressure or mechanical pumps. It is important to understand that pumping systems provide flow, not pressure. Pressure is the result of restricting flow. The output of an unrestricted pump is 0 psi (bar). When a restriction is placed in the flow, line pressure will result.

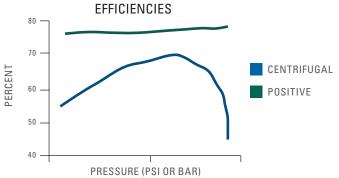
The main types of pumps are positive displacement and centrifugal. There are others, but the operational principles are the same as for positive displacement and centrifugal pumps.

Positive displacement pumps

A fixed volume of fluid is delivered for every stroke of a piston, or plunger or rotation of a shaft. Examples include piston pumps, plunger pumps, peristaltic pumps and gear pumps. Positive displacement pumps provide high pressure, and regardless of the system characteristics, will deliver a fixed flow every rotation. These pumps must have an unrestricted bypass valve and a pressure relief valve.


Centrifugal pumps (velocity pumps)


These pumps typically consist of a large vane (impeller) which is turned by a shaft inside a cavity (casing). The geometry of the impeller and casing moves the fluid in a tangential motion. The fluid gets restricted to a smaller volume and is then discharged into the system piping. These types of pumps typically operate at low pressure and high volume. They may also consist of several stages to increase the number of pressures available. These pumps have the unique feature of being able to run while the outlet is blocked. Since the pumps are velocity based, the impeller will spin in the casing fluid without "dead heading" the system itself. It will produce heat and may cavitate the fluid, but it will not build pressure like positive displacement pumps. However, a system bypass and pressure safety valve is still installed in the system to protect components.


HOW PUMPTYPE AFFECTS NOZZLE SELECTION

The flow rates and pressures required by the system will determine the pump choice. There are many styles, sizes and types of pumps available but these general guidelines should prove helpful.

- High flows usually require a centrifugal style pump
- High pressures usually require a positive displacement pump
- Variable Frequency Drive (VFD) pumps may be an option.
 These pumps allow variable control of speed and flow rates
- Consider the fluid. Specific gravity will affect pump flow rates just as it affects nozzle flow rates
- Pump efficiencies, heat, available power, maintenance and plant conditions should also be considered

ESTIMATING PRESSURE DROPS THROUGH FLUIDLINE ACCESSORIES

The rated capacities listed in this catalog for valves, strainers and fittings typically correspond to pressure drops of approximately 5% of their maximum operating pressure.

Visit spray.com/sprayware for an online pressure drop calculator. Or contact your local sales engineer.

APPROXIMATE FRICTION LOSS IN PIPE FITTINGS IN EQUIVALENT FEET (METERS) OF STRAIGHT PIPE

Use the chart below to determine the equivalent length of pipe through fittings to equate the friction loss.

Pipe Size Standard Wt. (in.)	Actual Inside Dia. in. (mm)	Gate Valve FULL OPEN ft. (m)	Globe Valve FULL OPEN ft. (m)	45° Elbow ft. (m)	Run of Standard Tee ft. (m)	Standard Elbow or Run of Tee Reduced 1/2 ft. (m)	Standard Tee Through Side Outlet ft. (m)
1/8	.269 (6.8)	.15 (.05)	8.0 (2.4)	.35 (.11)	.40 (.12)	.75 (.23)	1.4 (.43)
1/4	.364 (9.2)	.20 (.06)	11.0 (3.4)	.50 (.15)	.65 (.20)	1.1 (.34)	2.2 (.67)
1/2	.622 (15.8)	.35 (.11)	18.6 (5.7)	.78 (.24)	1.1 (.34)	1.7 (.52)	3.3 (1.0)
3/4	.824 (21)	.44 (.13)	23.1 (7.0)	.97 (.30)	1.4 (.43)	2.1 (.64)	4.2 (1.3)
1	1.049 (27)	.56 (.17)	29.4 (9.0)	1.2 (.37)	1.8 (.55)	2.6 (.79)	5.3 (1.6)
1-1/4	1.380 (35)	.74 (.23)	38.6 (11.8)	1.6 (.49)	2.3 (.70)	3.5 (1.1)	7.0 (2.1)
1-1/2	1.610 (41)	.86 (.26)	45.2 (13.8)	1.9 (.58)	2.7 (.82)	4.1 (1.2)	8.1 (2.5)
2	2.067 (53)	1.1 (.34)	58 (17.7)	2.4 (.73)	3.5 (1.1)	5.2 (1.6)	10.4 (3.2)
2-1/2	2.469 (63)	1.3 (.40)	69 (21)	2.9 (.88)	4.2 (1.3)	6.2 (1.9)	12.4 (3.8)
3	3.068 (78)	1.6 (.49)	86 (26)	3.6 (1.1)	5.2 (1.6)	7.7 (2.3)	15.5 (4.7)
4	4.026 (102)	2.1 (.64)	113 (34)	4.7 (1.4)	6.8 (2.1)	10.2 (3.1)	20.3 (6.2)
5	5.047 (128)	2.7 (.82)	142 (43)	5.9 (1.8)	8.5 (2.6)	12.7 (3.9)	25.4 (7.7)
6	6.065 (154)	3.2 (.98)	170 (52)	7.1 (2.2)	10.2 (3.1)	15.3 (4.7)	31 (9.4)

AIR FLOW (SCFM AND NLPM) THROUGH SCHEDULE 40 STEEL PIPE

Applied				Nom	inal S	andar	d Pipe S	Size (scfi	m)			Applied	Nominal Standard Pipe Size (nlpm)										
Pressure psig	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	2-1/2"	3"	Pressure bar	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	2-1/2"	3"
5	.5	1.2	2.7	4.9	6.6	13.0	27	40	80	135	240	0.3	14.2	34.0	76.5	139	187	370	765	1130	2265	3820	6796
10	.8	1.7	3.9	7.7	11.0	21	44	64	125	200	370	0.7	22.7	48.1	110	218	310	595	1245	1810	3540	5665	10480
20	1.3	3.0	6.6	13.0	18.5	35	75	110	215	350	600	1.4	36.8	85.0	187	370	525	990	2125	3115	6090	9910	16990
40	2.5	5.5	12.0	23	34	62	135	200	385	640	1100	2.8	70.8	155	340	650	960	1755	3820	5665	10900	18120	31150
60	3.5	8.0	18.0	34	50	93	195	290	560	900	1600	4.1	99.1	227	510	965	1415	2630	5520	8210	15860	25485	45305
80	4.7	10.5	23	44	65	120	255	380	720	1200	2100	5.5	133	297	650	1245	1840	3400	7220	10760	20390	33980	59465
100	5.8	13.0	29	54	80	150	315	470	900	1450	2600	6.9	164	370	820	1530	2265	4250	8920	13310	25485	41060	73625

FLOW OF WATER THROUGH SCHEDULE 40 STEEL PIPE - PRESSURE DROP

Flow	Pressure Drop in psi for Various Pipe Diameters 10 ft. Length Pipe								Flow Pressure Drop in bar for Various Pipe Diameters 10 m Length Pipe																								
gpm	1/8"	1⁄4"	3/8"	1/2"	3/4"	1"	11⁄4"	1½"	2"	2½"	3"	3½"	4"	5"	6"	8"	lpm	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1¼"	1½"	2"	2½"	3"	3½"	4"	5"	6"	8"
.3	.42																1	.07															
.4	.70	.16															1.5	.16	.04														
.5	1.1	.24															2	.26	.06														
.6	1.5	.33															2.5	.40	.08														
.8	2.5	.54	.13														3	.56	.12	.03													
1.0	3.7	.83	.19	.06													4	.96	.21	.05	.02												
1.5	8.0	1.8	.40	.12													6	2.0	.45	.10	.03												
2.0	13.4	3.0	.66	.21	.05												8	3.5	.74	.17	.05	.01											
2.5		4.5	1.0	.32	.08												10		1.2	.25	.08	.02											
3.0		6.4	1.4	.43	.11												12		1.7	.35	.11	.03											
4.0		11.1	2.4	.74	.18	.06											15		2.6	.54	.17	.04	.01										
5.0			3.7	1.1	.28	.08											20			.92	.28	.07	.02										
6.0			5.2	1.6	.38	.12											25			1.2	.45	.11	.03										
8.0			9.1	2.8	.66	.20	.05										30			2.1	.62	.15	.04	.01									
10				4.2	1.0	.30	.08										40				1.1	.25	.08	.02									
15					2.2	.64	.16	.08									60					.54	.16	.04	.02	.006							
20					3.8	1.1	.28	.13	.04								80					.93	.28	.07	.03	.009							
25						1.7	.42	.19	.06								100						.43	.12	.05	.01							
30						2.4	.59	.27	.08								115						.58	.14	.06	.015							
35						3.2	.79	.36	.11	.04							130						.72	.18	.08	.02	.01						
40							1.0	.47	.14	.06							150							.23	.10	.03	.012						
45							1.3	.59	.17	.07							170							.29	.13	.04	.016						
50							1.6	.72	.20	.08							190							.36	.16	.05	.02						
60							2.2	1.0	.29	.12	.04						230							.50	.23	.07	.03	.009					
70								1.4	.38	.16	.05						260								.32	.09	.04	.01					
80								1.8	.50	.20	.07						300								.38	.11	.04	.02	.007				
90								2.2	.62	.25	.09	.04					340								.50	.14	.06	.02	.009				
100								2.7	.76	.31	.11	.05					380								.61	.18	.07	.03	.01				
125									1.2	.47	.16	.08	.04				470									.28	.11	.04	.02	.009			
150									1.7	.67	.22	.11	.06				570									.39	.15	.05	.03	.01			
200									2.9	1.2	.39	.19	.10				750									.64	.26	.09	.04	.02	.007		
250											.59	.28	.15	.05			950											.14	.06	.03	.01		
300											.84	.40	.21	.07			1150											.19	.09	.05	.02		
400												.70	.37	.12	.05		1500												.16	.08	.03	.01	
500													.57	.18	.07		1900													.13	.04	.02	
750														.39	.16	.04	2800														.09	.03	.009
1000														.68	.27	.07	3800					Ì									.16	.06	.02
2000															1.0	.26	7500															.23	.06

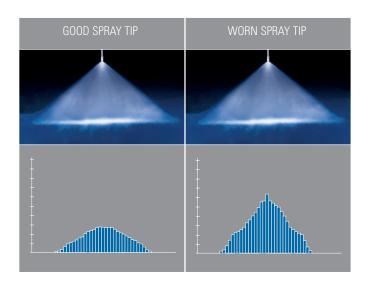
Recommended capacity range for each size is shown in shaded areas.

For pipe lengths greater than 10 ft. (3 m), the pressure loss is proportional to the length. For 50 ft. (15 m) of pipe, the pressure drop is approximately 5 times the value in the table.

MAINTAINING SPRAY NOZZLES

Like any precision component, spray nozzles wear over time. Spray nozzle wear can be hard to detect. Small changes in performance can result in quality problems and wasted water, chemicals and electricity. The cost of using worn nozzles can be very significant – tens of thousands of dollars or more per year. Detecting nozzle wear in the early stages can prevent a significant profit drain.

USING NOZZLES THAT ARE SPRAYING JUST 15% OVER THE RATED CAPACITY


	WASTE	COST OF EXCESS							
WATER	1,701,835 gallons (6,442,146 liters)	US \$4,680							
CHEMICALS	170,165 gallons (644,145 liters)	US \$170,164							
WASTEWATER DISPOSAL	1,872,000 gallons (7,086,291 liters)	US \$7,956							
TOTAL COST OF USING WORN NOZZLES: US \$182,800									

^{*}Based on total system flow of 100 gpm (379 lpm). Water cost of US \$2.75/1000 gallons (3,785 liters). Chemical cost of US \$1.00 per gallon (liter) and a dilution ratio of 10:1. System operates 2080 hours per year. Increased electricity cost, scrap and downtime due to quality problems are not included.

DETECTING WORN SPRAY NOZZLES

Visually inspecting nozzles is a start but unless wear is significant, it may not be detectable.

The graphic below illustrates this problem. The spray tip on the left is new and sprays properly. The spray tip on the right is worn and sprays 30% over capacity. The difference is undetectable by inspecting the nozzle, but spray collection data reveals the difference between the two tips.

WATCH FOR THESE SIGNS OF NOZZLE WEAR:

 Quality control issues and increased scrap. Check for uneven coating, cooling, drying or cleaning and changes in temperature, dust content and humidity

• Flow rate change:

- For centrifugal pumps: monitor flow meter readings to detect increases or collect and measure the flow from the spray nozzle for a given period of time at a specific pressure and compare them to flow rate readings from new, unused spray nozzles
- For positive displacement pumps: monitor the liquid line pressure for decreases; the flow rate will remain constant

• Spray pressure in the nozzle manifold:

- For centrifugal pumps: monitor for increases in liquid volume sprayed. The spraying pressure is likely to remain the same
- For positive displacement pumps: monitor pressure gauge for decreases in pressure and reduction in impact on sprayed surfaces. The liquid volume sprayed is likely to remain the same. Also, monitor for increases in pressure due to clogged spray nozzles
- Deterioration of spray pattern quality. Visually inspect the spray pattern for changes. Check the spray angle with a protractor. Measure the width of the spray pattern on the sprayed surface

REPLACING WORN NOZZLES

Inspecting and maintaining your nozzles on a regular basis will help identify wear and extend service life. However, wear will occur over time and the only solution is to replace your nozzles.

Here are a few guidelines to help you determine the optimal replacement interval:

- Are worn nozzles affecting product or process quality?
 If so, replace nozzles as soon as any wear is evident
- Is water conservation a priority? If so, replace nozzles as soon as wear is evident
- How much are you spending by continuing to use worn nozzles? How do the additional costs for water, chemicals, electricity and wastewater disposal compare with the cost of replacement nozzles?
- Is precise spray performance important to your overall process? If so, you may want to set pre-determined dates for nozzle replacement such as annual or semi-annual maintenance shutdowns

For more information on nozzle maintenance and replacement, visit spray.com. Or, contact your local sales engineer for assistance developing a nozzle maintenance program.

TABLE OF EQUIVALENTS

VOLUMETRIC UNIT

	Cubic Centimeter	Fluid Ounce	Pound of Water	Liter	US Gallon	Cubic Foot	Cubic Meter
Cubic Centimeter	•	.034	2.2 x 10 ⁻³	.001	2.64 x 10 ⁻⁴	3.53 x 10 ⁻⁵	1.0 x 10 ⁻⁶
Fluid Ounce	29.4	•	.065	.030	7.81 x 10 ⁻³	1.04 x 10 ⁻³	2.96 x 10 ⁻⁵
Pound of Water	454	15.4	•	.454	.12	.016	4.54 x 10 ⁻⁴
Liter	1000	33.8	2.2	•	.264	.035	.001
US Gallon	3785	128	8.34	3.785	•	.134	3.78 x 10 ⁻³
Cubic Foot	28320	958	62.4	28.3	7.48	•	.028
Cubic Meter	1.0 x 106	3.38 x 104	2202	1000	264	35.3	•

LIQUID PRESSURE

	lb/ln² (psi)	Ft Water	Kg/Cm ²	Atmosphere	Bar	Inch Mercury	kPa (kilopascal)
lb/ln² (psi)	•	2.31	.070	.068	.069	2.04	6.895
Ft Water	.433	•	.030	.029	.030	.882	2.99
Kg/Cm ²	14.2	32.8	•	.968	.981	29.0	98
Atmosphere	14.7	33.9	1.03	•	1.01	29.9	101
Bar	14.5	33.5	1.02	.987	•	29.5	100
Inch Mercury	.491	1.13	.035	.033	.034	•	3.4
kPa (kilopascal)	.145	.335	.01	.009	.01	.296	•

LINEAR UNIT

	Micron	Mil	Millimeter	Centimeter	Inch	Foot	Meter
Micron	•	.039	.001	1.0 x 10 ⁻⁴	3.94 x 10 ⁻⁵	-	_
Mil	25.4	•	2.54 x 10 ⁻²	2.54 x 10 ⁻³	.001	8.33 x 10 ⁻⁵	_
Millimeter	1000	39.4	•	.10	.0394	3.28 x 10 ⁻³	.001
Centimeter	10000	394	10	•	.394	.033	.01
Inch	2.54 x 104	1000	25.4	2.54	•	.083	.0254
Foot	3.05 x 105	1.2 x 104	305	30.5	12	•	.305
Meter	1.0 x 106	3.94 x 104	1000	100	39.4	3.28	•

MISCELLANEOUS EQUIVALENTS

Unit	Equivalent
Ounce	28.35 g
Pound	.4536 kg
Horse-Power	.746 kW
British Thermal Unit	.252 kcal
Square Inch	6.452 cm ²
Square Foot	.09290 m²

MISCELLANEOUS FORMULAS

Unit	Formula
Fahrenheit (°F)	= 9/5 (°C) + 32
Celsius (°C)	= 5/9 (°F) - 32
Circumference of a Circle	= 3.1416 x Dia.
Area of a Circle	= .7854 x (Dia.) ²
Volume of a Sphere	= .5236 x (Dia.) ³
Area of a Sphere	= 3.1416 x (Dia.) ²

DIMENSIONS

The catalog tabulations show orifice dimensions as "Nom." (nominal).

READ THE FOLLOWING INSTRUCTIONS:

WARNING:

All safety related and operating instructions should be read before the nozzle is operated. Follow all operating instructions. Failure to do so could result in serious or fatal injury.

WARNING:

It is important to recognize proper safety precautions when using a pressurized spray system. Fluids under pressure can penetrate skin and cause severe injury. Seek medical attention immediately.

WARNING:

When dealing with pressure applications, the system pressure should never exceed the lowest rated component. Always know your system and all component capabilities, maximum pressures and flow rates.

WARNING:

Before performing any maintenance, make sure all liquid supply lines to the machine are shut off and/or disconnected and chemicals/fluids are drained and not pressurized.

WARNING:

The use of any chemicals requires careful control of all worker hygiene. Follow all MSDS or safety precautions provided by the manufacturer.

WARNING:

Spraying Systems Co. does not manufacture or supply any of the chemicals used with our nozzles and is not responsible for their effects. Because of the large number of chemicals that could be used and their different chemical reactions, the buyer and user of this equipment should determine compatibility of the materials used and any of the potential hazards involved.

WARNING:

Spraying Systems Co. strongly recommends the use of appropriate safety equipment when working with potentially hazardous chemicals.

This equipment includes but is not limited to:

- Protective hat
- · Safety glasses or face shield
- Chemical-resistant gloves and apron
- Long sleeve shirt and long pants

WARNING:

Before use, be sure appropriate connections are secure and made to withstand weight and reaction forces of the operating unit.

NOTE: Always remember to carefully read the chemical manufacturer's label and follow all directions.

WARNING:

It is important to operate equipment within the temperature range of all components. Also, insure appropriate time lapse or proper safety equipment is used when handling components after they're exposed to high temperatures.

WARNING:

Do not use any equipment outside the intended purposes of the product. Misuse can result in personal injury or product damage.